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Quantum Supremacy

@ In this quest, we forget about the applications, only want to find a problem
which we can establish a quantum speedup over classical devices as clean as
possible.

@ The first application of quantum computing:

e Disprove the QC skeptics!
o And Extended Church-Turing Thesis.

@ An important milestone for QC.
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Decision Problem vs. Sampling Problem

@ An ideal way for showing quantum supremacy and convincing the skeptics
would be:

o Implement Shor’s algorithm [Sho97].
o Break RSA.
o Everyone believe your quantum computer works.

@ The only problem is that it needs too many qubits.
o 40 and 4000 are both O(1) in theory, but
o could require 50 years in the real world.

@ Would it be possible to demonstrate quantum supremacy with much less
qubits?
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Quantum Supremacy via Sampling Problems

@ Probably YES with a shift to sampling problem.
e Sampling problem:
e Given an input x, you are required to take sample from a certain distribution
D(x) over {0,1}".
@ Merits comparing to decision problem:

e Easier to solve with near-future quantum devices:

@ Do some complicated operations = get a highly entangled quantum state =
measure it.
@ Naturally induce a sampling problem.
o Easier to argue are hard for classical computers:

o ExactSampBPP = ExactSampBQP = PostBQP = PostBPP = PP C PH =
PH collapses.

@ Many works alone this line
[TD04, BJS10, AA13, MFF14, JVdN14, FH16, ABKM16].
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This talk

@ While there are many exciting results, there are still some theoretical
challenges for us.

o Verification for sampling problem:

o It is not directly verifiable that our algorithm really takes samples from the
predicted distributions D(x).

o We have to consider some statistical tests 7 on the obtained samples
X1y X2y .00y Xt

o But then the hardness assumption should imply no classical algorithm can pass

T.

e That is, we ought to talk about relational problems.
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This talk

@ While there are many exciting results, there are still some theoretical
challenges for us.

@ Supremacy Theorem for Approximate Sampling;:

o PH does not collapse = ExactSampBPP # ExactSampBQP.

o But, real world experiment is noisy, hardness for exact version is not
convincing enough.

e Previous results on quantum supremacy for approximate sampling relies on
some other unproven conjectures

o Like in Aaronson and Arkhipov [AA13], they need the hardness of Guassian
permanent estimation.

o Is that necessary? Could there be some simple (relativized) argument for PH

does not collapse = SampBPP # SampBQP?

@ Or is there an oracle for which the above does not hold?

e An open question raised in [AA13].
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Talk Outline

@ Random Quantum Circuit Proposal

o Heavy Output Generation (HOG)
o QUAtum THreshold assumption (QUATH)

o Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy
Theorems.

e There exists an oracle O, SampBPPO = SampBQPO and PH? is infinite.
e no relativized way to show quantum supremacy only base on PH doesn't
collapse. (unlike the exact version).

@ A glimpse on other results.

o Space-efficient algorithm for simulating quantum algorithm classically.
o 1 vs. Q(n) separation for sampling problems in query complexity.
e Quantum Supremacy relative to oracles in P/poly.

W
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Random Quantum Circuit Proposal

High level picture:

@ Generate a random quantum circuit C on /n x v/n grid.
o Apply Cto |0)®" for t times to obtain t samples xi, xa, . . . , X;.

@ Apply a statistical test on xq, ..., X;.
e This step may takes exponential classical time, but would be OK for n ~ 40.

@ Publish C, to challenge skeptics to pass the same test classically with
reasonable amount of time.
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e Heavy Output Generation Problem

More specifically:

Problem (HOG, or Heavy Output Generation)

Given as input a random quantum circuit C (will be specified later), generate
output strings xi, ..., Xk, at least a 2/3 fraction of which have greater than the
median probability in C’s output distribution.

@ The verification can be done in exponential time classically.

o We want to find a clean assumption that implies HOG is hard.
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The Random Circuit Distribution

We use ug;i'g to denote the following distribution of random circuit on v/n x v/n
with m gates. (Assuming m>> n).

@ A gate can only act on two adjacent qubits.

@ For each t < n, we pick the t-th qubit and a random neighbor of it. (The
purpose here is to make sure that there is a gate on every qubit.)

@ For each t > n, we pick a uniform random pair of adjacent qubits in the grid.

@ In either case, we set the t-th gate to be a uniform random 2-qubit gate.
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Some notations: Heavy Output, and adv(|u))

@ For a pure state |u) on n qubits, we define probList(|u)) to be the list
consisting of 2" numbers, |(u|x)|? for each x € {0,1}".

o Given N real numbers ay, az, ..., ay, we use uphalf(a, as, ..., ay) to denote
the sum of the largest N/2 numbers among them, and we let

adv(|u)) = uphalf(probList(|u))).

o We say that an output z € {0,1}" is heavy for a quantum circuit C, if it is
greater than the median of probList(C|0")).

o We abbreviate adv(C|0")) as adv(C).

@ The simple quantum algorithm'’s output is heavy w.p. adv(C).
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Lower bound on adv(C)

@ What we can prove, is that the expectation of adv(C) is high.

Forn>2 and m > n:

@ But we conjecture that adv(C) is large with an overwhelming probability.

For n > 2 and m > n?, and for all constants & > 0,

1+1In2
<

—e| <exp{—Q(n)}.
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Lower bound on adv(

@ But we conjecture that adv(C) is large with an overwhelming probability.

Forn>2 and m > n?, and for all constants & > 0,

1+1In2
<—

Pr |adv(C) 5

—e| <exp{—Q(n)}.

@ Basically, the above inequality holds when C is replaced by a uniform random
unitary on n qubits.

@ So what we conjecture is that a random quantum circuit is pseudo-random in
a certain sense.

@ We provide some evidence by numeric simulation in the Appendix.

@ In the following we will assume this conjecture.
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Easiness for Quantum Algorithm

We are going to argue that HOG problem is a good quantum supremacy
experiment.

Proposition

There is a quantum algorithm that succeeds at HOG with probability
1 — exp{—(min(n, k))}.

@ From the conjecture, w.h.p., adv(C) > 0.7.

@ In that case, A random sample from Cis heavy w.p. 0.7.

@ Then a Chernoff bound suffices.
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The Quantum Threshold Assumption

Assumption (QUATH, or the QUAntum THreshold assumption)

There is no polynomial-time classical algorithm that takes as input a description
of a random quantum circuit C, and that guesses whether [(0"|C|0™)|? is greater
or less than the median of all 2" of the |(0"|C|x)|? values, with success probability

1 1
at least 3 +Q <§> over the choice of C.

17 /29
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Hardness for Classical Algorithm : Proof Sketch

Assuming QUATH, no polynomial-time classical algorithm can solve HOG with
probability at least 0.99.

@ Suppose for contradiction that there exists such an algorithm A, we construct
an algorithm to violate QUATH.

@ Given a circuit C.
@ Apply a random “xor"-mask z on C to get a circuit C such that
(0]C'|2) = (0|C]0).
e i.e. Hide the amplitude we care about.
@ Run Aon C, to get a list of outputs xi, Xa, . .., X;, pick one of them x; at
uniformly random.

o We guess it's greater than median, if z = x;.
o Take a uniform random guess otherwise.

@ Violates QUATH.
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Section

© Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy
Theorems
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SampBPP and SampBQP

Definition (Sampling Problems, SampBPP, and SampBQP)

o A sampling problem S is a collection of probability distributions (Dx), 0.1}
one for each input string x € {0,1}", where D, is a distribution over
{0, l}p("), for some fixed polynomial p.

© Then SampBPP is the class of sampling problems S = (Dx),c o 1y~ for which
there exists a probabilistic polynomial-time algorithm B that, given ( x, 0'/¢
as input, samples from a probability distribution Cy such that ||Cx — Dy|| < e.

o SampBQP is defined the same way, except that B is quantum now.
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Our goal and what we have

@ Our goal is to construct an oracle O such that:
o PHO is infinite.

° SampBPPO = SampBQPO.

@ What we know is:

o For a random oracle O, PH? is infinite by Rossman, Servedio and
Tan [RST15].

o For a PSPACE-complete language L, SampBPPL = SampBQPL.
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Intuition

o Naive idea:

e Simply let our oracle be a combination of both a PSPACE-complete language
and a random oracle.

e Problem: SampBPP and SampBQP now get access to a random oracle, it can
be proved they are not equal in this case.

@ Trying to fix it, can we somehow hide the random oracle so that:

e An algorithm in PH has access to it, so PH is still infinite.

e SampBQP algorithm cannot access it (or with very small probability), so
SampBQP and SampBPP are not re-separated.
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e Given a string w € {0,1}", we hide it in a random matrix M,, of {0,1}V*V
as follows:

o If w; =1, a uniform random position of i~th row is 1, other positions are 0.
o If w; =0, the entire i-th row is 0.

@ A random oracle O can be viewed as a list of functions

{fn: {0, 13" = {0, 1}}72,

@ Or a list of strings
{wa: {0,1}* — {0,1}}72,

o By hiding each w, into a random matrix of {0,1}*"*2", we can obtain

another oracle M (actually a distribution on oracles).
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Construction

o M is just what we want:

o An algorithm in PH can recover w from M,, (simply by a OR layer), hence PH
is still infinite.

o Meanwhile, since OR is hard for quantum algorithms [BBBV97], use a
BBBV-type argument, one can show that essentially a quantum algorithm
with oracle accesses to M can be simulated efficiently by a classical
randomized algorithm.

@ Need to work out many technical details, but the idea is very clean.
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Space-efficient algorithm for simulating quantum algorithm

classically

@ Given a n qubit and m gates circuit, how to simulate it classically and
efficiently?

@ “Schrodinger way":

e Store the whole wave-function.

o O(m2") time and O(2") space.
o “Feynman way":

e Sum over paths.

o 0(4™1) time and O(m + n) space.
o We show:

o “Savitch way”: O((2d)") time and poly space, (d is the depth).
e Can be further improved on circuit on grids.
o Trade-off between space and time:

@ A d factor in time < a 2 factor in space.
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1 vs Q(n) Separation in query complexity

@ Here we consider sampling problems in query complexity.

@ The Fourier Sampling problem introduced by Aaronson and Ambainis [AA14],
requires only 1 query for a quantum algorithm.

@ It is also shown in [AA14] that it requires 2(N/ log N) queries for classical
randomized algorithms.

e We improve it by showing that Fourier Sampling requires Q(N) queries in
fact.

@ Hence, in the world of query complexity, classical and quantum sampling
algorithm has the maximum possible separation.
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Quantum Supremacy with respect to oracles in P/poly

o We ask: is there an oracle O in P/poly, such that BQPO #* BPP®?

@ An intermediate case between black-box (oracle separation) and
non-black-box arguments (real world, no oracle) by requiring the oracle to
“exist in real world".

@ Previous works [Zhal2, SG04] imply that the answer is YES when one-way
function exist.

@ We show that at least some computational assumptions are needed by
proving that the answer is NO if SampBPP = SampBQP and NP C BPP.
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Any Questions?

Thank you
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