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An Example

Minimum Spanning Tree (MST)
Given an edge-weighted graph.
Find a spanning tree with minimum weight.

MST is easy—if we know the exact weights.

What if we don’t have complete information?
Now that each edge e has an associated distribution De with mean µe.
We want a spanning tree with minimum

∑
e µe.

Each time we can choose an edge and take a sample from that distribution.
Goal: Succeed w.p. 1− δ and minimize the samples we need.
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Combinatorial Multi-Armed Bandit (CMAB)

Introduced by Chen, Wang and Yuan in 2013 [CWY13].
n stochastic arms. Each arm corresponds to an edge.
Each one with an (unknown) distributions Di with mean µi, and supported
on [0, 1].
A family S of subsets of {1, 2, . . . , n}. Each subset in S corresponds to a
spanning tree.
Want a subset O ∈ S maximizing

∑
i∈O µi.
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Combinatorial Multi-Armed Bandit (CMAB)

CMAB is a very general framework.
Too general: Very difficult to obtain tight lower and upper bounds for the
general problem.
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Matroid Constraints

We consider Matroid constraints.
General enough to cover many interesting applications.
Rich combinatorial structure which allows us to obtain nearly tight bounds.
Generalizes the well studied Best-1-Arm and Best-k-Arm problems
(uniform matroid).
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Several Motivating Applications

The notion of matroid abstracts many combinatorial structures:
...1 Uniform matroid (cardinality constraints).
...2 Partition matroid.
...3 Laminar matroid.
...4 Transversal matroid.
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Partition Matroid

m disjoint groups of arms.
Want the best ki arms in the ith group.
Studied by Gabillon et al. [GGLB11] and Bubeck et al. [BWV12].
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Laminar Matroid

m disjoint groups of arms.
Choose at most ki arms in the ith group.
Choose at most N arms in total.
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Transversal Matroid
n workers and m tasks.
Task i has reward distribution Di.
Each worker is capable of doing a subset of tasks.
Each worker can only do one task.
Find the optimal subset of tasks that can be finished.

S is all the subsets of tasks admitting a matching from workers.
Potential applications in crowdsourcing or online advertisement.

Figure: Two possible assignments for {t2, t3} and {t1, t2} in the family S.
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Our Results

i An optimal PAC algorithm (for finding an ε-optimal solution).

ii An exact algorithm. Our (gap-dependent) upper bound even improves the
state of art of Best-k-Arm.
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Result I: An Optimal PAC Algorithm

A new metric: we say I is ε-optimal, if it becomes the optimal basis after
adding ε to the mean of every arms in I.
Stronger than all previous metrics in Best-k-Arm [KS10], [ZCL14] and
[CLTL15].
We develop an algorithm for finding an ε-optimal solution w.p. at least 1− δ,
using at most

O(nε−2 · (ln k + ln δ−1))

samples, where k is the rank of the matroid.
Generalize the results by Kalyanakrishnan et al. [KTAS12] and Cao et
al. [CLTL15].
Known lower bound for Best-k-Arm:

Ω(nε−2 · (ln k + ln δ−1))

by Kalyanakrishnan et al. [KTAS12] (Our algorithm is indeed optimal).
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Result II: An Exact Algorithm

Output the optimal solution with probability 1− δ.
The sample complexity depends on the gaps.

The smaller the gaps are, the harder to identify the optimal solution.

Assume arms have distinct means. So the optimal solution is unique.

∆i (Gap) for arm i is defined as follows:
If i ∈ OPT: the loss of the utility when you are forced not to select i.
If i ̸∈ OPT: the loss of the utility when you are forced to select i.

It is the same definition of gap in Chen et al. [CLK+14], and generalizes the
previous gap definition for Best-k-Arm as in Kalyanakrishnan et al. [KTAS12].
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Result II: An Exact Algorithm

We develop an algorithm for finding the optimal solution with probability at
least 1− δ, using at most

O
(∑

e∈S
∆−2

e (ln δ−1 + ln k + ln ln∆−1
e )

)

samples, where k is the rank of the matroid.
For matroids, Chen et al. [CLK+14] achieves an upper bound of

O
(∑

e∈S
∆−2

e (ln δ−1 + ln n + ln
∑
e∈S

∆−1
e )

)
.

Known lower bound by Chen et al. [CLK+14]:

O
(∑

e∈S
∆−2

e ln δ−1

)
.
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Comparing with the state of the art of Best-k-Arm

Our result strictly improves the state-of-the-art bound for Best-k-Arm by
Kalyanakrishnan et al. [KTAS12]:

O
( n∑

i=1

∆−2
i (ln δ−1 + ln

∑n

i=1
∆−2

i )

)
.

When k is much smaller than n, our algorithm achieves a significant improvement.
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High-level Idea of Our Optimal PAC Algorithms

UCB-type algorithms usually need a ln n factor (for union bound).
We use an elimination-based approach to get a ln k factor.

Recall our PAC bound: O(nε−2 · (ln k + ln δ−1)).

Elimination in Best-1-Arm or Best-k-Arm is simple.
In each round, we eliminate some arms:

i Find a threshold (a percentile [ZCL14], or an approximate optimal
arm [KKS13]).

ii Eliminate arms with empirical means worse than the threshold.
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Difficulty

It is unclear how to eliminate some arms in matroids: A nearly optimal
solution may contain a lot of arms among the lower quarter.
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Sampling and Pruning Technique

We overcome the difficulty by using the novel sampling and pruning
technique developed by Karger, Klein and Tarjan [KKT95].

The technique was originally used for design more efficient algorithm for MST.

Their key idea is to use a solution for a random sampled subset to do the
elimination.
We adapt their approach to the bandit setting.
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An Example: Maximum Spanning Tree
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1 Want to find an ε-optimal solution.
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2 Select a random subset F of arms, by picking each arm with prob p = 0.5.
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3 Recursively find an ε/3-optimal solution I in F.
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4 Estimate the means of remaining arms, and eliminate those “bad arms”—the
edges ε/3-approximate dominated by the corresponding path in I.
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5 Recurse on the remaining arms again.
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Sampling and Pruning Technique

Key point: after one elimination, w.h.p we
i Eliminate a constant fraction of arms.
ii Do not hurt the optimal solution too much.
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Open Problems

Some interesting future directions:
Apply the sampling and pruning technique in other bandit problems?

Can we find better algorithm for other combinatorial constraints besides
matroids? E.g., bipartite matching. There is an example where Chen et al.’s
algorithm needs Ω(n3ε−2) samples, while a simple O(n2ε−2) algorithms can
be obtained easily for that example.

The utility of set S is a nonlinear function of the means (rather than∑
i∈S µi), or a general function depending on the distributions (e.g.,

[maxi∈S xi] Best-of-K Bandits by Simchowitz, Jamieson and Recht [SJR16]).
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