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Long-term goal

> Lower bounds for non-uniform Boolean circuits
y Decades-long efforts, notoriously difficult problem

y Some “dream results”:
» NP ¢ P/poly > PzNP
» DTIME[s©0 ] ¢ i.0.SIZE[s] = prBPP = prP [IW'99]



Combinatorial-algebraic approaches

» Restriction method [Ajt'83,FSS'84,Yao'85,Has'86]

» Polynomial approximation method [Raz'87, Smo'87]

» No “natural proofs” for “strong” circuits [RR'94]

y circuit class can compute a PRF = “resistant” to natural proofs



Algorithmic method

» Circuit-analysis algorithm = lower bounds

» need “barely non-trivial” deterministic algorithm

[BFS'98, IKW'01, KI'03, Wil"10, MW"18]
» Breakthrough where combinatorial methods failed

» Widely-believed to be possible for strong circuits



Hardness magnification

y Lower bounds for “weak” circuits

= lower bounds for “stronger” circuits

» New(-ish) paradigm, many conditional results

[Sri'03,AK"0,LW™3,0518,CILM'I8,MMW'9,0PS"9]

> No known barriers



Linear Threshold Circuits (TC9):
A Prominent Frontier



A prominent frontier: TCO

» TCO% Constant-depth, poly size, linear threshold gates

» linear threshold gate: ®(x) = 1 iff Yw;x; > 0, forw € R"*,0 € R.

N Yw;d;(x) > 07




A prominent frontier: TCO

» TCO: Constant-depth, poly size, linear threshold gates

» linear threshold gate: ®(x) = 1 iff Yw;x; > 0, forw € R"*,0 € R.

» PRF candidate [NR'97] = “natural proofs” barrier

> Open problem: Prove that NEXP ¢ TCO°

» NEXP = NTIME[2P° (V)]



Known lower bounds for TC°

y Thm [IPS'93]: TCC circuits of depth d need

nl+exp(=4) wires to compute the parity function

y extends to average-case lower bounds [CSS'16]

» better bounds for fixed depth < 3 or “structured subclasses”

[KS15, KW'6, Tam'16, ACW'16, SSTT'16]

1 age(result) > age(Lijie)



Hardness magnification

» the precise size/depth trade-off matters

»y Thm [AK"O]: If TCO circuits of depth d need

n1t0(1/d) wires to solve certain (NC'-complete)

problems, then NC! ¢ TC°

» known lower bounds of n1*¢*P(=d wires for these problems



Known circuit-analysis alg for TCO®

y Derandomization: Given a description of a circuit,

approximate its acceptance probability up to +1/6

> Quantified derandomization [GW'14]:

Given a circuit €:{0,1}* — {0,1}, decide if C accepts
all but B(n) inputs or rejects all but B(n) inputs



Known circuit-analysis alg for TCO®

» Thm [T"18]: A deterministic n(°glog™*_time alg for

guantified derandomization of TC° with depth d and
o - —d
nl+exp(-d) wires and B(n) = 20 7Y
» better algorithms for fixed depth < 2 or “structured subclasses”
[DGJI*10, RS0, GOW*10, KRS'12, MZ13, Kan'11, Kan4, KM'15, KM'5,
IPS"13, Wil'l4, AS'15, SSTT'16, Tam'16, ACW'16]



Quantified derand implies lower bounds

» the precise size/depth trade-off matters

» Thm [T"8]: If there's a deterministic 2m°Y time alg for

guantified derandomization of TC® with depth d and

1-1/d

n1t0/d) wires and B(n) = 2™ ', then NEXP ¢ TCO

y quantified derand = standard derand = lower bounds

» known derand for n1*e¥P(=4) \ires is faster & handles larger B(n)



The state of knowledge at STOC'8

y for depth-d TC circuits

H#wires lower bounds derandomization

poly(n) ﬁ ﬁ

nlto(1/d) specific bounds can quant derand implies
be “amplified” [AK'T0] NEXP ¢ TC° [T18]

1+exp(—q) Unconditional lower  unconditional quantified

n bounds[IPS'93,CSS16]  derandomization [T'18]



Our results



The high-level message

y Improved hardness magnification and “quantified
derandomization implies lower bounds” for TC°
» Both kick in at n1*** wires, “just beyond” known

unconditional results at n'+*8™* (8 > a > 1)

> Gap between “known” and “breakthrough” boils

. . . -d
down to precise a > 1 in the size bound nl*?



Improved hardness magnification

» hardness magnification at n1*e*PEd wires

» Thm 1: If Va > 1 and sufficiently large d, TC° of

depth d require n1+«* wires to solve certain
(NC'-complete) problems, then NC' ¢ TCO°

—-d .
» we know lower bounds for n1*£™" wires, where g ~ 2.41

y for breakthrough results we need ni+e% wires, where a ~ 1.18



Improved quant derand = lower bounds

» quantified derandomization at n' P-4 wires implies lower bounds

y Thm 2: If there's a deterministic 2°”-time alg for

quantified derand of TCO with n1*161™" wires and
B(n) = 2" " then NEXP ¢ TCO

» known algorithm handles ni+p™ wires, where 8 = 30

» for breakthrough results we need n'*% “ wires, where a ~ 1.61

1 we think that the known algorithm can be improved to work also when g = 7



The state of knowledge at STOC'8

H#wires lower bounds derandomization

poly(n) ﬁ ﬁ

nlto(/d) specific bounds can quant derand implies
be “amplified” [AK'T0] NEXP ¢ TC° [T18]

1+exp(—q) Unconditional lower unconditional quantified

n bounds[IPS'93,CSS16]  derandomization [T'18]



The updated state of knowledge (STOC9)

H#wires lower bounds derandomization
poly(n) N\ A
- specific bounds can  quant derand would

n be “amplified” [Thm 1] imply NEXP ¢ TCO [Thm 2]

1+p-4¢ unconditional lower unconditional quantified
n bounds([IPS'93,CSS'16]  derandomization [T18]

1 informal; think of a < B as fixed universal constants



Hardness magnification for
extremely sparse TCP° circuits



Proof overview for Thm 1

» Idea [AK'10]: Use the fact that NC' has complete funcs

with associative property ( oy, ..., g, = Igempo; ) [Bar89]

» Thm [AK"O]: If an associative problem has TCP circuit

of size n%M, then it has depth-d circuit of size n1+t01/4)

» We improve the implementation of their depth-d

circuit to size n1*¢*P(=9 ysing ideas from [BBM'92, PS'94]

1 same approach also works for other NC'-complete funcs



About the construction...

» [AK"O0]: partition inputs into [AK’10]

blocks of size n€, compute func

Ly: n°(©) wires

on each block using

hypothesized ckt (of size n%©), . P\ | L2 n€0© wires
recurse #b d\@

» induces a computation tree / \ / \ »/ \, / \Li:n"'“‘)(’f)wires

over the inputs of depth d = 1/€¢

d =0(1/€)



Our improvement and Comparison

[AK’10]

ALl: n%© wires
€+0(€) wires

de &5

PANDN TV

d = 0(1/e) L;: nt€+0(€) wires




Our improvement and Comparison

[AK'10]

» our obs: this tree is L, 100 wires

wasteful at top levels,

optimal tree has B

L,: n€t9(©) wires
depth d = In(1/¢€) 5
(generalizes [BBM'92, |

PS'94]) ,/ \,

d=0(1/e L;: nt€+0(€) wires




Our improvement and Comparison

[AK'10]

> our obs: this tree is

L;: n%© wires

wasteful at top levels,

optimal tree has B

L,: n€t9(©) wires
depth d = In(1/¢€) 5
(generalizes [BBM'92, |

PS'94]) ,/ \,

d=0(1/e L;: nt€+0(€) wires

Contributions of the layers are imbalanced.




Our improvement and Comparison

[AK'10]

[This work]

> our obs: this tree is

- 1006 Wi .
Ly:n™" wires Ly: n'*0( wires

wasteful at top levels,

optimal tree has B

depth d ~ In(1/e) 5 L,: n€t9® wires . Ly: n+0(© wires
(generalizes [BBM'92, | dh db

ps04] [\ PANSN VT

d = 0(1/e) L;: nt€+0(€) wires

d = 0(In 1/e€) L;: n'*9(€ wires

Contributions of the layers are imbalanced.




Our improvement and Comparison

[AK'10]

[This work]

> our obs: this tree is

L;: n%© wires

Ly: n'9(©) wires

wasteful at top levels,

optimal tree has B

L,: n€t9(©) wires

L,: n'*0(€) wires

depth d = In(1/¢€)

(generalizes [BBM'92,

o n AR AR

d=0(1/€) L;: nt€+0(€) wires

d =0(n1/€) L;: n'*9(€ wires

Contributions of the layers are imbalanced. Contributions of the layers are balanced.




Quantified derand of extremely sparse
TC° implies lower bounds



Proof overview for Thm 2

» starting point: derandomization with B(n) = 2™/3

for TC® implies NEXP ¢ TCO [Wil"13,SW'13,BV'14]

derandomization
with B(n) ~ 27”°

derandomization
with B(n) = 2"/3

lower
bounds



Proof overview for Thm 2

y standard idea: error-reduction

» given C:{0,1}™ - {0,1} with 2™/3 exceptional inputs,

construct €':{0,1}" - {0,1} with = 2"”° exceptional inputs

C accepts all but
2™ /3 of inputs

C rejects all but
2™ /3 of inputs

-

-

C’ accepts all but
~ 2" of Inputs

C’' rejects all but
~ 27 of INnputs



Proof overview for Thm 2

» needed: extractor/sampler in uniform sparse TCO

o

?
» C vy 0 y@ Ly @ NE

Y (S)

uniform sparse TCO
m extractor/sampler

X Xp,



Proof overview for Thm 2

» Thm: There exists an (essentially optimal) extractor in

uniform TC° with depth d and only n1*exP(-4) wijres

y seeded extractor: Ext: {0,1}" x {0,1}° - {0,1}™

» output length m = n&xp(-ad)
» seed length s = (1 + exp(—d)) - log(n)
> Min-entropy k = nl—exp(=d)

1 observation: #outputs of the circuits = #wires in the circuit!



About the construction...

y based on a non-uniform construction of [GHKPV'13]

y we show a uniform construction with minor param loss

y components: uniform constructions of various combinatorial

objects in extremely sparse TC? (balanced codes, designs...)

» technical tool: zig-zag based bipartite expanders [CRVW’'02]



Key takeaways



The previous intuition (at STOC'18)

» TCO circuits with n1*exP(=4) wires are very weak, but...

» TCO circuits with n1*01/4 wires are very strong!

y potential “natural proofs” barrier (PRF candidate of [MV'15])



A new Intuition?

» the best explanation we have

y TCO circuits with n+8™ wires are very weak, but..

. . . —d .
» TCO circuits with n'*®* = wires are very strong?...

y can compute linear functions, codes, extractors

H u ” o —-d H
y is there a “natural proofs” barrier at n'** = wires?



Key takeaways

» TCOlower bounds are just “a tiny improvement” away!

. -d .
» challenge: analyze TCO with n'*t* = wires for small a > 1
»y show PRF candidate? or...

» any non-trivial structural result?



Thank you!

= new landscape for linear threshold circuits
= breakthroughs lie “just beyond” current lower bounds



