CS 278: Computational Complexity Theory
Homework 1

Due: September 26 2025
Fall 2025

Instructions:

Collaboration is allowed but solutions must be written independently.
Please write your solutions in a I¥TEX document.

Please submit your solutions via an email to lijiechen@berkeley.edu, the subject line
should be “CS 278: Homework 1 — [Your Name]”.

Please Use “CS 278: Homework 1 — [Your Name].pdf” as the name of your homework.
Please submit your solutions by 11:59PM on September 26, 2025, Pacific Time.

Late submissions get a penalty of 10% per day, consult the lecturer if you need exten-
sions. (i.e., being late by 3 days gets 0.9 = 0.729 fraction of the score.).

The maximum score of this homework is 160. There are 4 problems, and each problem
is worth 40 points. If you get n points, your score for this homework is

n
_ " 195
M= 100 ¢

Let aq,as, as, ay be the scores for the 4 homeworks, your final grade of homework is
min(a; + as + ag + a4, 50).

In other words, you don’t have to solve all the problems to get a perfect score on
homeworks.

CS 278: Computational Complexity Theory Fall 2025

1 Problem 1: Non-deterministic time hierarchy theo-
rem with bounded guess, revisited

In the class, we proved the following theorem:

Theorem 1 (Non-deterministic time hierarchy theorem with bounded guess). Let T, G, W : N —
N be time-constructible functions such that G(n) = o(T'(n)) and W(n) = o(n). Then there is
a language L € NTIME[T (n)] but L is almost-everywhere separated from NTIMEGUESS|G(n), W (n)].

Part (a). 20 pts Explain why the almost-everywhere separation against NTIMEGUESS[G(n), W (n)]
proved above does not work for NTIME[G(n)], which part of the proof fails? (i.e., if you

attempt to use the same proof to prove that NTIME[T'(n)] is almost-everywhere separated
from NTIME|G(n)], which part of the proof fails?)

Part (b). 20 pts Strengthen the proof to show an almost-everywhere separation between
NTIMEGUESS[T'(n),n] and NTIMEGUESS|G(n), W (n)|?

Name: Page 2

CS 278: Computational Complexity Theory Fall 2025

2 Solution to Problem 1

2.1 Part (a)

Note that in the proof, a cruical step is construct the input (M, w), with length n. This
is only possible since the length of w is o(n). If we attempt to use the same proof for
NTIME[G(n)], the length of w can be G(n) which can be much larger than n, and we cannot
encode M and w both in the n-bit string.

2.2 Part (b)

The original proof would just work, the only difference is to observe that the new language H
is indeed also in NTIMEGUESS[T'(n), n], since the simulation of a non-deterministic machine
with n/10 witnesses itself can be done with n witnesses.

Name: Page 3

CS 278: Computational Complexity Theory Fall 2025

3 Problem 2: Robustly-often NTIME Hierarchy (40
pts)

We mentioned that the non-deterministic time hierarchy theorem only works either infinitely
often, or almost everywhere, but only against the weak class NTIMEGUESS|T'(n), n/10].

Problem 2 asks you to prove the following theorem, which shows that it is possible to
have a separation that is stronger than infinitely often (but weaker than almost everywhere),
that holds for the general class NTIME[T'(n)].

Theorem 2. Let T'(n) = n® be a polynomial where K € N is a constant. There is a
language L € NTIME[T (n)?] such that for every L' € NTIME|T(n)], for every sufficiently
large ng € N, there exists an n € [ng, T(no)"?] such that L, # L, here L, denotes the
restriction of L to input length n (L, = {x € L| |x| =n}).

Hint 1. The issue of applying the proof for NTIMEGUESS[T (n),n/10] to NTIME[T (n)] is
that the hard machine is going to take the witness as part of the n-bit input, NTIME[T (n)]
has T(n) bit witnesses, so it’s impossible to include those in the n-bit input.

But you may be able to deal with that by using the ideas from the original proof of NTIME
hierarchy theorem!

Name: Page 4

CS 278: Computational Complexity Theory Fall 2025

4 Solution to Problem 2

Let n; be a sufficiently large integer. For every i € N, we set n; = T'(n;_1)"* + 1.

Given the description of a non-deterministic machine M (for a description of an normal
nondeterministic TM, we add a timer to make it stop in T'(n)™! time), we can construct a
language L € NTIME[T (n)?] such that if M runs in NTIME[T (n)] time, for every sufficiently
large ¢ € N, there exists an n € [n;, T'(n;)"!] such that L, # M,.

We will define our H as follows. First, for the description of a NTM and a witness
w € {0,1}*, and an integer n € N. We define (M, w),, to be an encoding of the pair (M)
(the description of M) and w (the witness), such that (M, w), € {0,1}". Note that if
[(M)| + |w| > n/2, we simply set (M, w),, = 0" (i.e., we give up encoding such pairs).

First, for every n € [n;, T'(n;)''!), we set (below (M, 0),, denotes an encoding of the pair
(M) and length-1 witness 0)

H(<M? O>n> = M(<M7 0>n+1)'

Note that M runs in O(7'(n)) non-deterministic time, so H above takes O(T'(n + 1)) <
T(n)? time, since T is a polynomial.
Now, let m = ¢ T(n) < T(n)"! be the running time of M on input length n.
Let wq, ..., wsm be a sequence of all possible strings of length m.
Let = T'(n)"! be the right side of the interval [n;, T'(n;)"].
We then define
H((M,0),) = M((M,w),).

and

M((M,w;i1),) A [Dp({(M,0),,w;) = 0] if 2 = (M, w;), for some i € [1,2™)
H(z) = [Dar((M,0),,, wym) = 0] if 2 = (M, wym),

0 otherwise

For H on other values not considered above, we simply set H(z) = 0.
Note that H € NTIME[T (n)?].
Now, for the sake of contradiction, suppose M computes H on all n-bit inputs for n €
[ni, T(na) ™).
Then we know That
H({M,0)n) = H({(M,0)n11)

for all n € [n;, T(n;)"!) and
H(<M7 0>r) = H<<M7 wl)r)‘

THis gives us H((M,0),) = H((M,w;),).
Then, by the definition of H on r-bit inputs, we also have

om

i=1

Name: Page 5

CS 278: Computational Complexity Theory Fall 2025

Reading the right side above, it is true if and only if Dy, ((M, 0),,w;) = 0 for alli € [1,2™],
which means M rejects the input (M, 0),,.

Therefore, we have H((M,w,),) = =M ((M,0),), which contradicts the assumption that
M computes H on all n-bit inputs for n € [n;, T'(n;)"].

Name: Page 6

CS 278: Computational Complexity Theory Fall 2025

5 Problem 3: Refuter for Theorem [1]

Theorem (1] implies that, for the corresponding hard language L € NTIME[T (n)], for every
NTIMEGUESS[G(n), W (n)] machine M, there exists an integer Ny, € N such that for all
n > Ny, there exists an input z,, € {0, 1}" such that L,,(x,) # M(z,).

For Problem 3, to make things easier, we will assume that both 7'(n) and G(n) from
Theorem (1] are polynomials in n.

Your task is to construct a “refuter” for Theorem [I], that is, a machine R that, it takes
the description of a NTIMEGUESS|G(n), W (n)] machine M, as well as an input length n
as input, and outputs a string z, = R((M),n) € {0,1}" such that L(z,) # M(x,), for
sufficiently large n > Ny,.

In a sense, we are asking to make the proof of Theorem [I| “constructive”, in the sense
that not only we want these x, € {0,1}" to exist, but we also want to be able to construct
them by an explicit algorithm.

Your algorithm R should be an NP-oracle polynomial time deterministic machine. That
is, it can make NP-oracle queries to some oracle O € NP, and it can make polynomial
number of queries to O, and runs in deterministic polynomial time.

Part (a). 20 pts Suppose you are given query access to a list aj, as, ..., ax of N integers,
and you are promised that a; # ay. Design a deterministic algorithm that finds an index i
such that a; # a;11, using at most O(log N') queries to the list.

Part (b). 20 pts Construct the required refuter algorithm R.

Name: Page 7

CS 278: Computational Complexity Theory Fall 2025

6 Solution to Problem 3

6.1 Part (a)

Note that we can maintain two points ¢, r such that a, # a, and ¢ < r. They are initialized
to 1 and N. Each time we query m = [(¢ + r)/2], we can compare a,, with a, and a,. If
ay, # ag, we set r =m, if a,, # a,, we set £ =m. We stopif { +1=r.

6.2 Part (b)
Recall the definition of H € NTIME[T'(n)] as

M({M,wiy1)n) A [Dar({M,w1)n, w;) = 0] if x = (M, w;),, for some i € [1,2"/10)
H(l’) = [DM(<M, w1>n,w2n/1o) = O] if v = <M, w2n/10>n

0 otherwise

Now, there are two cases, the first case is that M ((M,w;),) = 0 (we can query the
NP oracle to check this condition). In particular, this means Dy ((M,w),, w;) = 0 for all
i € [1,2"/'9]. Then we have

H(x) M({M,wiy1),) if x = (M, w;), for some i € [1,2"/10)
xr) =
]_ lf xr = <M, wZn/lO)n

Now, consider the sequence
M((M,w1)n), M({M,ws)p), ..., M({M,wyn0)y), H({(M, wyn/0)n)

From the discussions above, we know that 0 = M((M,w1),) # H((M,wyno)n) = 1.
Then, by part (a), we can find an index i such that either M ((M,w;),) # M({M,w;y1)n)
or H((M, wn10)y) # M({M,wyn/10),). Since M ({(M,w;y1)n) = H((M,w;),), we know that
M((M,w;),) # H((M,w;),) as well. This solves the problem when M ((M,w),) = 0.

The second case is that M ((M,w),) = 1. In particular, this means Dy, ((M, w;),, w;) =
1 for some i € [1,2%/19].

Note that by a binary search, we can find the first j such that Dy ((M,w;),, w;) = 1. In
particular, this also means That

H(z) MM, w;1),) if = (M, w;), for some i € [1,7)
xr) =
0 if v = (M,w,),

Now, consider the sequence
M(<M7 wl)”)v M(<M7 w2>n>> SRR M(<M7 wj)”)? H(<M7 wj)”)

We can apply the part (a) and argue similarly to solve the problem.

Name: Page 8

CS 278: Computational Complexity Theory Fall 2025

7 Relativization Barrier for P vs BPP

We now explore the relativization barrier for the P vs BPP problem. First, let’s recall the
definitions of these complexity classes.

We say a langauge L is in P if there exists a deterministic polynomial-time Turing machine
M such that for all z:

e If x € L, then M(z) =1
o If z ¢ L, then M(z)=0

We say a langauge L is in BPP if there exists a deterministic polynomial-time Turing
machine M and a polynomial p: N — N such that for all :U:E]

o If z € L, then Pr (g 1ypen [M (z,7) = 1] > 2/3
o If x ¢ L, then Prre{o,l}mm)[M(l'; T) - 1] < 1/3

Let O: {0,1}* — {0,1} be an oracle. We can define the classes P and BPP? analo-
gously, by changing the machine M from definition to O-oracle Turing machine M©.

Part (a). 15 pts Show that there exists an oracle O; such that P* = BPP®.
Part (b). 15 pts Show that there exists an oracle Oy such that P?? BPP?2,

Part (c). 10 pts Show that there exists an oracle O3 such that P = BPP yet
P9 £ NP%%,

'Note that here M itself is deterministic, the randomness is over the second input r € {0, l}p(|“"‘).

Name: Page 9

CS 278: Computational Complexity Theory Fall 2025

8 Solution to Problem 4

8.1 Part (a)

Essentially just take a hard enough oracle would suffice. One can take the PSPACE-complete
language TQBF as the oracle. This would collapse both P?' and BPP®! to PSPACE.

8.2 Part (b)

For the oracle Oy, we consider the following language:
L = {1" : there are at least 2/3 fractions of n-bit strings x such that Oy(z) =1 }.

Furthermore, we will promise that for our oracle Oy, either there are at least 2/3 fractions
of n-bit strings x such that Oz(x) = 1, or there are at most 0 fractions of n-bit strings =
such that Oq(z) = 1.

Let ny be a sufficiently large integer. For every ¢ € N, we set n; = 2"-1. This is to ensure
that for all n'°¢™ machine on input length n;, they cannot query input length n;; on O,.

Now, on input length n; we will make sure the i-th n'°¢"-time TM M, cannot compute
L on input length n,.

To do this, we simply simulate M; with the current Oy (all unset values are 0) on input
17 for n\°8™ steps. If M; outputs 1, we set O, to be all zero on n;-bit inputs. Otherwise if
M; outputs 0, we set O, to be all-one except for the queried inputs. This would ensure that
M; cannot compute L on input length n;.

8.3 Part (c¢)
First we can set the oracle O to be TQBF, this would collapse P® and BPP? to PSPACE.

Next, we are going to construct another oracle O such that poY — BPPO’O,, yet
POY" £ NP?Y". Then our final oracle @5 would just be putting these two oracle @ and ¢’
together.

Let ny be a sufficiently large integer. For every ¢+ € N, we set n; = 2™-1.
For the oracle O, we consider the following language:

L = {1" : there is a n-bit string x such that O'(z) =1 }.

logn_time TM M; cannot compute

Now, on input length n; we will make sure the i-th n
L on input length n,.

To do this, we simply simulate M; with the current @’ (all unset values are 0) on input
1™ for ni.ogm steps. If M; outputs 1, we set O’ to be all zero on n;-bit inputs. Otherwise if
M; outputs 0, we pick a entry x € {0,1}" that is not queried yet, and set O'(z) = 1, and
set everything else to 0. This would ensure that M; cannot compute L on input length n;.

The point is that, we can pick = in a way that it is queried by the first n; n'°¢"-time
randomized TM with probability at most 27"/2, since there are 2% possible strings. One

can argue that this probability is too small and we still have poY — BPPYY.

Name: Page 10

	Problem 1: Non-deterministic time hierarchy theorem with bounded guess, revisited
	Solution to Problem 1
	Part (a)
	Part (b)

	Problem 2: Robustly-often NTIME Hierarchy (40 pts)
	Solution to Problem 2
	Problem 3: Refuter for Theorem 1
	Solution to Problem 3
	Part (a)
	Part (b)

	Relativization Barrier for P vs BPP
	Solution to Problem 4
	Part (a)
	Part (b)
	Part (c)

