
CS 278: Computational Complexity Theory
Homework 1

Due: September 26 2025

Fall 2025

Instructions:

• Collaboration is allowed but solutions must be written independently.

• Please write your solutions in a LATEX document.

• Please submit your solutions via an email to lijiechen@berkeley.edu, the subject line
should be “CS 278: Homework 1 – [Your Name]”.

• Please Use “CS 278: Homework 1 – [Your Name].pdf” as the name of your homework.

• Please submit your solutions by 11:59PM on September 26, 2025, Pacific Time.

• Late submissions get a penalty of 10% per day, consult the lecturer if you need exten-
sions. (i.e., being late by 3 days gets 0.93 = 0.729 fraction of the score.).

• The maximum score of this homework is 160. There are 4 problems, and each problem
is worth 40 points. If you get n points, your score for this homework is

a1 =
n

100
× 12.5

• Let a1, a2, a3, a4 be the scores for the 4 homeworks, your final grade of homework is
min(a1 + a2 + a3 + a4, 50).

• In other words, you don’t have to solve all the problems to get a perfect score on
homeworks.

1

CS 278: Computational Complexity Theory Fall 2025

1 Problem 1: Non-deterministic time hierarchy theo-

rem with bounded guess, revisited

In the class, we proved the following theorem:

Theorem 1 (Non-deterministic time hierarchy theorem with bounded guess). Let T,G,W : N →
N be time-constructible functions such that G(n) = o(T (n)) and W (n) = o(n). Then there is
a language L ∈ NTIME[T (n)] but L is almost-everywhere separated from NTIMEGUESS[G(n),W (n)].

Part (a). 20 pts Explain why the almost-everywhere separation against NTIMEGUESS[G(n),W (n)]
proved above does not work for NTIME[G(n)], which part of the proof fails? (i.e., if you
attempt to use the same proof to prove that NTIME[T (n)] is almost-everywhere separated
from NTIME[G(n)], which part of the proof fails?)

Part (b). 20 pts Strengthen the proof to show an almost-everywhere separation between
NTIMEGUESS[T (n), n] and NTIMEGUESS[G(n),W (n)]?

Name: Page 2

CS 278: Computational Complexity Theory Fall 2025

2 Solution to Problem 1

2.1 Part (a)

Note that in the proof, a cruical step is construct the input ⟨M,w⟩n with length n. This
is only possible since the length of w is o(n). If we attempt to use the same proof for
NTIME[G(n)], the length of w can be G(n) which can be much larger than n, and we cannot
encode M and w both in the n-bit string.

2.2 Part (b)

The original proof would just work, the only difference is to observe that the new language H
is indeed also in NTIMEGUESS[T (n), n], since the simulation of a non-deterministic machine
with n/10 witnesses itself can be done with n witnesses.

Name: Page 3

CS 278: Computational Complexity Theory Fall 2025

3 Problem 2: Robustly-often NTIME Hierarchy (40

pts)

We mentioned that the non-deterministic time hierarchy theorem only works either infinitely
often, or almost everywhere, but only against the weak class NTIMEGUESS[T (n), n/10].

Problem 2 asks you to prove the following theorem, which shows that it is possible to
have a separation that is stronger than infinitely often (but weaker than almost everywhere),
that holds for the general class NTIME[T (n)].

Theorem 2. Let T (n) = nK be a polynomial where K ∈ N is a constant. There is a
language L ∈ NTIME[T (n)2] such that for every L′ ∈ NTIME[T (n)], for every sufficiently
large n0 ∈ N, there exists an n ∈ [n0, T (n0)

1.5] such that Ln ̸= L′
n, here Ln denotes the

restriction of L to input length n (Ln = {x ∈ L | |x| = n}).

Hint 1. The issue of applying the proof for NTIMEGUESS[T (n), n/10] to NTIME[T (n)] is
that the hard machine is going to take the witness as part of the n-bit input, NTIME[T (n)]
has T (n) bit witnesses, so it’s impossible to include those in the n-bit input.

But you may be able to deal with that by using the ideas from the original proof of NTIME
hierarchy theorem!

Name: Page 4

CS 278: Computational Complexity Theory Fall 2025

4 Solution to Problem 2

Let n1 be a sufficiently large integer. For every i ∈ N, we set ni = T (ni−1)
1.1 + 1.

Given the description of a non-deterministic machine M (for a description of an normal
nondeterministic TM, we add a timer to make it stop in T (n)1.1 time), we can construct a
language L ∈ NTIME[T (n)2] such that if M runs in NTIME[T (n)] time, for every sufficiently
large i ∈ N, there exists an n ∈ [ni, T (ni)

1.1] such that Ln ̸= Mn.
We will define our H as follows. First, for the description of a NTM and a witness

w ∈ {0, 1}∗, and an integer n ∈ N. We define ⟨M,w⟩n to be an encoding of the pair ⟨M⟩
(the description of M) and w (the witness), such that ⟨M,w⟩n ∈ {0, 1}n. Note that if
|⟨M⟩|+ |w| > n/2, we simply set ⟨M,w⟩n = 0n (i.e., we give up encoding such pairs).

First, for every n ∈ [ni, T (ni)
1.1), we set (below ⟨M, 0⟩n denotes an encoding of the pair

⟨M⟩ and length-1 witness 0)

H(⟨M, 0⟩n) = M(⟨M, 0⟩n+1).

Note that M runs in O(T (n)) non-deterministic time, so H above takes O(T (n + 1)) ≤
T (n)2 time, since T is a polynomial.

Now, let m = c · T (n) < T (n)1.1 be the running time of M on input length n.
Let w1, . . . , w2m be a sequence of all possible strings of length m.
Let r = T (n)1.1 be the right side of the interval [ni, T (ni)

1.1].
We then define

H(⟨M, 0⟩r) = M(⟨M,w1⟩r).

and

H(x) =


M(⟨M,wi+1⟩r) ∧ [DM(⟨M, 0⟩n, wi) = 0] if x = ⟨M,wi⟩r for some i ∈ [1, 2m)

[DM(⟨M, 0⟩n, w2m) = 0] if x = ⟨M,w2m⟩r
0 otherwise

For H on other values not considered above, we simply set H(x) = 0.
Note that H ∈ NTIME[T (n)2].
Now, for the sake of contradiction, suppose M computes H on all n-bit inputs for n ∈

[ni, T (ni)
1.1].

Then we know That
H(⟨M, 0⟩n) = H(⟨M, 0⟩n+1)

for all n ∈ [ni, T (ni)
1.1) and

H(⟨M, 0⟩r) = H(⟨M,w1⟩r).

THis gives us H(⟨M, 0⟩n) = H(⟨M,w1⟩r).
Then, by the definition of H on r-bit inputs, we also have

H(⟨M,w1⟩r) =
2m∧
i=1

[DM(⟨M, 0⟩n, wi) = 0]

Name: Page 5

CS 278: Computational Complexity Theory Fall 2025

Reading the right side above, it is true if and only ifDM(⟨M, 0⟩n, wi) = 0 for all i ∈ [1, 2m],
which means M rejects the input ⟨M, 0⟩n.

Therefore, we have H(⟨M,w1⟩n) = ¬M(⟨M, 0⟩n), which contradicts the assumption that
M computes H on all n-bit inputs for n ∈ [ni, T (ni)

1.1].

Name: Page 6

CS 278: Computational Complexity Theory Fall 2025

5 Problem 3: Refuter for Theorem 1

Theorem 1 implies that, for the corresponding hard language L ∈ NTIME[T (n)], for every
NTIMEGUESS[G(n),W (n)] machine M , there exists an integer NM ∈ N such that for all
n ≥ NM , there exists an input xn ∈ {0, 1}n such that Ln(xn) ̸= M(xn).

For Problem 3, to make things easier, we will assume that both T (n) and G(n) from
Theorem 1 are polynomials in n.

Your task is to construct a “refuter” for Theorem 1, that is, a machine R that, it takes
the description of a NTIMEGUESS[G(n),W (n)] machine M , as well as an input length n
as input, and outputs a string xn = R(⟨M⟩, n) ∈ {0, 1}n such that L(xn) ̸= M(xn), for
sufficiently large n ≥ NM .

In a sense, we are asking to make the proof of Theorem 1 “constructive”, in the sense
that not only we want these xn ∈ {0, 1}n to exist, but we also want to be able to construct
them by an explicit algorithm.

Your algorithm R should be an NP-oracle polynomial time deterministic machine. That
is, it can make NP-oracle queries to some oracle O ∈ NP, and it can make polynomial
number of queries to O, and runs in deterministic polynomial time.

Part (a). 20 pts Suppose you are given query access to a list a1, a2, . . . , aN of N integers,
and you are promised that a1 ̸= aN . Design a deterministic algorithm that finds an index i
such that ai ̸= ai+1, using at most O(logN) queries to the list.

Part (b). 20 pts Construct the required refuter algorithm R.

Name: Page 7

CS 278: Computational Complexity Theory Fall 2025

6 Solution to Problem 3

6.1 Part (a)

Note that we can maintain two points ℓ, r such that aℓ ̸= ar and ℓ < r. They are initialized
to 1 and N . Each time we query m = ⌊(ℓ + r)/2⌋, we can compare am with aℓ and ar. If
am ̸= aℓ, we set r = m, if am ̸= ar, we set ℓ = m. We stop if ℓ+ 1 = r.

6.2 Part (b)

Recall the definition of H ∈ NTIME[T (n)] as

H(x) =


M(⟨M,wi+1⟩n) ∧ [DM(⟨M,w1⟩n, wi) = 0] if x = ⟨M,wi⟩n for some i ∈ [1, 2n/10)

[DM(⟨M,w1⟩n, w2n/10) = 0] if x = ⟨M,w2n/10⟩n
0 otherwise

Now, there are two cases, the first case is that M(⟨M,w1⟩n) = 0 (we can query the
NP oracle to check this condition). In particular, this means DM(⟨M,w1⟩n, wi) = 0 for all
i ∈ [1, 2n/10]. Then we have

H(x) =

{
M(⟨M,wi+1⟩n) if x = ⟨M,wi⟩n for some i ∈ [1, 2n/10)

1 if x = ⟨M,w2n/10⟩n

Now, consider the sequence

M(⟨M,w1⟩n),M(⟨M,w2⟩n), . . . ,M(⟨M,w2n/10⟩n), H(⟨M,w2n/10⟩n)

From the discussions above, we know that 0 = M(⟨M,w1⟩n) ̸= H(⟨M,w2n/10⟩n) = 1.
Then, by part (a), we can find an index i such that either M(⟨M,wi⟩n) ̸= M(⟨M,wi+1⟩n)
or H(⟨M,w2n/10⟩n) ̸= M(⟨M,w2n/10⟩n). Since M(⟨M,wi+1⟩n) = H(⟨M,wi⟩n), we know that
M(⟨M,wi⟩n) ̸= H(⟨M,wi⟩n) as well. This solves the problem when M(⟨M,w1⟩n) = 0.

The second case is that M(⟨M,w1⟩n) = 1. In particular, this means DM(⟨M,w1⟩n, wi) =
1 for some i ∈ [1, 2n/10].

Note that by a binary search, we can find the first j such that DM(⟨M,w1⟩n, wj) = 1. In
particular, this also means That

H(x) =

{
M(⟨M,wi+1⟩n) if x = ⟨M,wi⟩n for some i ∈ [1, j)

0 if x = ⟨M,wj⟩n

Now, consider the sequence

M(⟨M,w1⟩n),M(⟨M,w2⟩n), . . . ,M(⟨M,wj⟩n), H(⟨M,wj⟩n)

We can apply the part (a) and argue similarly to solve the problem.

Name: Page 8

CS 278: Computational Complexity Theory Fall 2025

7 Relativization Barrier for P vs BPP

We now explore the relativization barrier for the P vs BPP problem. First, let’s recall the
definitions of these complexity classes.

We say a langauge L is in P if there exists a deterministic polynomial-time Turing machine
M such that for all x:

• If x ∈ L, then M(x) = 1

• If x /∈ L, then M(x) = 0

We say a langauge L is in BPP if there exists a deterministic polynomial-time Turing
machine M and a polynomial p : N → N such that for all x:1

• If x ∈ L, then Prr∈{0,1}p(|x|) [M(x, r) = 1] ≥ 2/3

• If x /∈ L, then Prr∈{0,1}p(|x|) [M(x, r) = 1] ≤ 1/3

Let O : {0, 1}∗ → {0, 1} be an oracle. We can define the classes PO and BPPO analo-
gously, by changing the machine M from definition to O-oracle Turing machine MO.

Part (a). 15 pts Show that there exists an oracle O1 such that PO1 = BPPO1 .

Part (b). 15 pts Show that there exists an oracle O2 such that PO2 ̸= BPPO2 .

Part (c). 10 pts Show that there exists an oracle O3 such that PO3 = BPPO3 , yet
PO3 ̸= NPO3 .

1Note that here M itself is deterministic, the randomness is over the second input r ∈ {0, 1}p(|x|).

Name: Page 9

CS 278: Computational Complexity Theory Fall 2025

8 Solution to Problem 4

8.1 Part (a)

Essentially just take a hard enough oracle would suffice. One can take the PSPACE-complete
language TQBF as the oracle. This would collapse both PO1 and BPPO1 to PSPACE.

8.2 Part (b)

For the oracle O2, we consider the following language:

L = {1n : there are at least 2/3 fractions of n-bit strings x such that O2(x) = 1 }.

Furthermore, we will promise that for our oracle O2, either there are at least 2/3 fractions
of n-bit strings x such that O2(x) = 1, or there are at most 0 fractions of n-bit strings x
such that O2(x) = 1.

Let n1 be a sufficiently large integer. For every i ∈ N, we set ni = 2ni−1 . This is to ensure
that for all nlogn machine on input length ni, they cannot query input length ni+1 on O2.

Now, on input length ni we will make sure the i-th nlogn-time TM Mi cannot compute
L on input length ni.

To do this, we simply simulate Mi with the current O2 (all unset values are 0) on input
1ni for nlogni

i steps. If Mi outputs 1, we set O2 to be all zero on ni-bit inputs. Otherwise if
Mi outputs 0, we set O2 to be all-one except for the queried inputs. This would ensure that
Mi cannot compute L on input length ni.

8.3 Part (c)

First we can set the oracle O to be TQBF, this would collapse PO and BPPO to PSPACE.
Next, we are going to construct another oracle O′ such that PO,O′

= BPPO,O′
, yet

PO,O′ ̸= NPO,O′
. Then our final oracle O3 would just be putting these two oracle O and O′

together.
Let n1 be a sufficiently large integer. For every i ∈ N, we set ni = 2ni−1 .
For the oracle O′, we consider the following language:

L = {1n : there is a n-bit string x such that O′(x) = 1 }.

Now, on input length ni we will make sure the i-th nlogn-time TM Mi cannot compute
L on input length ni.

To do this, we simply simulate Mi with the current O′ (all unset values are 0) on input
1ni for nlogni

i steps. If Mi outputs 1, we set O′ to be all zero on ni-bit inputs. Otherwise if
Mi outputs 0, we pick a entry x ∈ {0, 1}ni that is not queried yet, and set O′(x) = 1, and
set everything else to 0. This would ensure that Mi cannot compute L on input length ni.

The point is that, we can pick x in a way that it is queried by the first ni n
logn-time

randomized TM with probability at most 2−ni/2, since there are 2ni possible strings. One
can argue that this probability is too small and we still have PO,O′

= BPPO,O′
.

Name: Page 10

	Problem 1: Non-deterministic time hierarchy theorem with bounded guess, revisited
	Solution to Problem 1
	Part (a)
	Part (b)

	Problem 2: Robustly-often NTIME Hierarchy (40 pts)
	Solution to Problem 2
	Problem 3: Refuter for Theorem 1
	Solution to Problem 3
	Part (a)
	Part (b)

	Relativization Barrier for P vs BPP
	Solution to Problem 4
	Part (a)
	Part (b)
	Part (c)

