
CS 278: Computational Complexity Theory
Homework 3

Due: November 20, 2025

Fall 2025

Instructions:

• Collaboration is allowed but solutions must be written independently. List collabora-
tors and any external resources you used.

• Write your solutions in LATEX and submit a single PDF to the course Gradescope.

• Deadline: 11:59pm Pacific Time November 20.

• Late submissions lose 10% per day (e.g., three days late → 0.93 of your score).

• The maximum score of this homework is 200. There are 5 problems, and each problem
is worth 40 points. If you get n points, your score for this homework is

a3 =
n

100
× 12.5

• Let a1, a2, a3, a4 be the scores for the 4 homeworks, your final grade of homework is
min(a1 + a2 + a3 + a4, 50).

• In other words, you don’t have to solve all the problems to get a perfect score on
homeworks.

1

CS 278: Computational Complexity Theory Fall 2025

1 Problem 1: Downward self-reducibility

1.1 Determinant and Permanent

For an n×n matrix A = (aij), recall the minor Mij is the (n− 1)× (n− 1) matrix obtained
by deleting row i and column j.

Definition (Determinant). Given an n×n matrix A = (aij) over a field, the determinant
of A, denoted det(A), is defined by

det(A) =
∑
σ∈Sn

sgn(σ) a1,σ(1)a2,σ(2) · · · an,σ(n),

where the sum is over all permutations σ of {1, 2, . . . , n}, and sgn(σ) ∈ {+1,−1} denotes
the sign of permutation σ.

The sign of a permutation σ ∈ Sn, denoted sgn(σ), is defined as +1 if σ is an even
permutation (i.e., it can be written as the product of an even number of transpositions), and
−1 if σ is odd (i.e., it can be written as the product of an odd number of transpositions).
Formally,

sgn(σ) =

{
+1 if σ is even,

−1 if σ is odd.

Equivalently, sgn(σ) = (−1)# of inversions in σ, where an inversion is a pair (i, j) with 1 ≤ i <
j ≤ n and σ(i) > σ(j).

Definition (Permanent). Given the same matrix A = (aij), the permanent of A, denoted
perm(A), is defined by

perm(A) =
∑
σ∈Sn

a1,σ(1)a2,σ(2) · · · an,σ(n),

where the sum is over all permutations σ of {1, 2, . . . , n}. Unlike the determinant, no sign
is included in the summation for the permanent.

For simplicity, we will assume that the field is over Fp for a fixed prime p (independent
of n).

(a) (10 pts) Show that det(A) can be computed in polynomial time with the help of the
oracle access to det on (n− 1)× (n− 1) matrices. Hint: use the Laplace expansion for
the determinant.

(b) (10 pts) Prove the analogous statement for the permanent.

1.2 PSPACE-complete problem

Definition (Downward Self-Reducibility). A language (decision problem) L is said to
be downward self-reducible if there exists a polynomial-time oracle Turing machine M such

Name: Page 2

CS 278: Computational Complexity Theory Fall 2025

that ML(x) = L(x) for every input x, and on any input x, every oracle query y made by M
satisfies |y| < |x| (that is, the queries are always to strictly smaller input lengths).

Intuitively, this means that we can decide membership in L for an input x efficiently,
provided we have access to an oracle that solves L on smaller inputs.

(c) (10 pts) Define a NP-complete problem that is downward self-reducible.

(d) (10 pts) Define a PSPACE-complete problem that is downward self-reducible. Hint:
think about the TQBF problem.

For (c) and (d) you can cite the textbook for NP or PSPACE-completeness, but you need
to prove the downward self-reducibility yourself.

Name: Page 3

CS 278: Computational Complexity Theory Fall 2025

2 Problem 2: AC0[2] lower bound via probabilistic poly-

nomials over F2

A probabilistic polynomial over F2 for a Boolean function F : {0, 1}n → {0, 1} with error ε
is a distribution D over F2[x1, . . . , xn] such that

Pr
P←D, x←{0,1}n

[
P (x) = F (x)

]
≥ 1− ε.

We say a probabilistic polynomial has degree d if all polynomials in the distribution have
degree at most d.

(a) (10 pts) Show that for every m and ε > 0, the ANDm function has an ε-error proba-
bilistic polynomial over F2 of degree O(log(m/ε)).

(b) (10 pts) Deduce the same for ORm. Observe that XOR is exactly linear over F2.

(c) (10 pts) Prove that any depth-d, size-nO(1) AC0[2] circuit has a 1/8-error probabilistic
polynomial over F2 of degree (log n)O(d).

(d) (10 pts) Prove that MOD3 is not in AC0[2]. Hint: prove that MOD3 requires degree
Ω(

√
n) over F2 to be approximated with constant error.

Definition (MOD3). The MOD3 function on n bits, denoted MOD3 : {0, 1}n → {0, 1}, is
defined by

MOD3(x1, . . . , xn) =

{
1 if x1 + x2 + · · ·+ xn ≡ 1 (mod 3)

0 otherwise

or more generally, MOD3(x1, . . . , xn) = 1 if and only if the Hamming weight of (x1, . . . , xn)
is congruent to 1 (mod 3).

Name: Page 4

CS 278: Computational Complexity Theory Fall 2025

3 Problem 3: Consequences of derandomization

In this problem we will explore some interesting consequences of derandomization.

Definition (prBPPand prP). The class prBPP (promise BPP) consists of all promise
problems that can be decided by a probabilistic polynomial-time Turing machine with
bounded error. That is, for a promise problem Π = (Πyes,Πno), there exists a probabilistic
polynomial-time algorithm A such that:

• For all x ∈ Πyes, Pr[A(x) = 1] ≥ 2/3;

• For all x ∈ Πno, Pr[A(x) = 0] ≥ 2/3;

where the probability is taken over the random coins of A. No guarantee is made for x /∈
Πyes ∪ Πno.

The class prP (promise P) consists of all promise problems that can be decided by a deter-
ministic polynomial-time Turing machine, that is, there exists a polynomial-time algorithm
A such that:

• For all x ∈ Πyes, A(x) = 1;

• For all x ∈ Πno, A(x) = 0.

As above, nothing is required for x /∈ Πyes ∪ Πno.

(a) (20 pts) Show that if prBPP = prP, then for every k ∈ N, NP ̸⊂ SIZE(nk). You can
use the fact that prMA ̸⊂ SIZE(nk) for every k ∈ N.

For completeness, we recall the definition of prMA.

Definition (prMA). The class prMA (promise Merlin-Arthur) consists of all promise prob-
lems Π = (Πyes,Πno) for which there is a polynomial-time randomized verifier V (x,w) and
a polynomial p(·) such that for every input x of length n:

• If x ∈ Πyes, then there exists a witness w ∈ {0, 1}p(n) such that Pr[V (x,w) = 1] ≥ 2/3,

• If x ∈ Πno, then for every w ∈ {0, 1}p(n), Pr[V (x,w) = 1] ≤ 1/3,

where the probability is taken over the random coins of V . No guarantee is made for
x /∈ Πyes ∪ Πno.

(b) (10 pts) Show that, if “prBPP = prP implies P ̸= NP”, then P ̸= NP. Hint: note that
if P = NP, then prBPP = prP. You can use this fact in your proof.

(c) (10 pts) Prove that if prBPP = prP, then there is a polynomial-time algorithm A such
that for every large enough n ∈ N, A(1n) outputs an n-bit prime number (i.e., a prime
number in the range of 2n−1 to 2n − 1).

• Hint 1: you need to do a search to decision.

Name: Page 5

CS 278: Computational Complexity Theory Fall 2025

• Hint 2: If prBPP = prP, then there is a polynomial-time algorithm A that takes
a circuit C and 1k as input, and outputs an estimate τ which satisfies∣∣∣τ − Pr

r
[C(r) = 1]

∣∣∣ ≤ 1/k.

You can use this fact for your prime construction algorithm.

Prime Number Theorem. The prime number theorem states that the number of prime
numbers less than or equal to N , denoted by π(N), satisfies

π(N) ∼ N

lnN

as N → ∞. That is,

lim
N→∞

π(N)

N/ lnN
= 1.

Equivalently, the probability that a random integer in [1, N] is prime is approximately 1/ lnN
for large N .

Name: Page 6

CS 278: Computational Complexity Theory Fall 2025

4 Problem 4: Instantiations of Nisan-Wigderson

In this problem, we will instantiate the Nisan-Wigderson PRG to get different pseudorandom
objects.

In the first half, we will first instantiate the NW PRG to give a k-wise independent
generator G : {0, 1}O(k2 logm) → {0, 1}m.

The generator will be based on the following “hard predicate” against functions that look
at most k bits (aka k-juntas). Let Parityℓ : {0, 1}ℓ → {0, 1} be the Parity function on ℓ bits,
i.e., Parityℓ(x1, . . . , xℓ) = x1 + x2 + . . .+ xℓ mod 2.

1. (10 points) Let k < ℓ. Show that any k-junta g : {0, 1}ℓ → {0, 1} agrees with Parityℓ
on exactly 1/2 of the inputs.

2. (20 points) Recall that there exists an (ℓ, a, d) combinatorial design S1, . . . , Sm ⊆ [d]
such that a = log(m), ℓ = (k + 1) log(m) and d = 100(k + 1)2 log(m).

Let NWf : {0, 1}d → {0, 1}m be the Nisan-Wigderson construction with predicate
f = Parityℓ and the above combinatorial design. We call a distributionD on {0, 1}m “k-
junta next-bit-unpredictable” if for any i ∈ {1, . . . ,m} and any k-junta gi : {0, 1}i−1 →
{0, 1} it holds that

Pr
x∼D

[g(x1, . . . , xi−1) = xi] = 1/2.

Show that the output of NWf is k-junta next-bit-unpredictable (or k-junta NBU).

3. (10 points) Use the connection between NBU and pseudorandomness, specialized to
the case of k-juntas, to prove that NWf is a k-wise independent generator.

Definition (k-wise independent generator). A function G : {0, 1}s → {0, 1}m is called
a k-wise independent generator if the distribution on {0, 1}m defined by G(Us) (where Us

is the uniform distribution on {0, 1}s) is k-wise independent. That is, for any choice of k
distinct indices i1, . . . , ik ∈ {1, . . . ,m} and any b1, . . . , bk ∈ {0, 1}, we have

Pr
x∼Us

[G(x)i1 = b1, . . . , G(x)ik = bk] = 2−k.ß

Equivalently, any k output bits of G(Us) are independent and uniformly distributed over
{0, 1}k.

Definition ((ℓ, a, d) combinatorial design). A collection of sets S1, . . . , Sm ⊆ [d] is
called an (ℓ, a, d) combinatorial design if:

1. Each Si has size exactly ℓ, i.e., |Si| = ℓ for all i ∈ {1, . . . ,m}.

2. For any distinct i ̸= j, we have |Si ∩ Sj| ≤ a.

Here, d is the size of the universe, ℓ is the size of each set, and a bounds the intersection size
between any two different sets in the collection.

Name: Page 7

CS 278: Computational Complexity Theory Fall 2025

5 Problem 5: Derandomization of MA and AM

In this problem, we will explore the derandomization of MA and AM, and show that they
both collapse to NP under plausible assumptions.

5.1 Derandomization of MA.

MA (Merlin-Arthur) is the class of languages for which there exists a probabilistic polynomial-
time verifier V such that:

• (Completeness) If x ∈ L, then there exists a “proof” w (also called a witness) such
that V (x,w; r) = 1 with probability at least 2/3 over the random coins r.

• (Soundness) If x /∈ L, then for every “proof” w, V (x,w; r) = 1 with probability at
most 1/3 over the random coins r.

Intuitively, Merlin (the prover) sends a string w to Arthur (the verifier), who then tosses
random coins and decides to accept or reject based on x, w, and the random coins.

Part (a): 20 pts. Show that if E requires 2ϵn-size circuits for some ϵ > 0, then MA = NP.
Hint: You can use the fact that if E requires 2ϵn-size circuits for some ϵ > 0, then

there exists a pseudorandom generator (PRG) with O(log n)-bit seed that fools O(n)-size
circuits with error at most 0.1. That is, for every n, there is an efficiently computable PRG
G : {0, 1}c logn → {0, 1}n such that for every Boolean circuit C of size O(n),∣∣∣∣ Prx∼Un

[C(x) = 1]− Pr
s∼Uc logn

[C(G(s)) = 1]

∣∣∣∣ ≤ 0.1,

where Uk denotes the uniform distribution over {0, 1}k and c > 0 is some constant.

5.2 Derandomization of AM.

AM (Arthur-Merlin) is the class of languages for which there exists a probabilistic polynomial-
time verifier V such that:

• (Completeness) If x ∈ L, then with probability at least 2/3 over Arthur’s random coins
r, there exists a string w such that V (x; r, w) = 1

• (Soundness) If x /∈ L, then with probability at least 2/3 over Arthur’s random coins r,
for every string w, V (x; r, w) = 0.

In the AM protocol (in its standard 2-message form), Arthur sends random coins r to Merlin,
Merlin responds with a string w, and then Arthur computes V (x; r, w).

Part (b): 20 pts. Show that if E cannot be (1/2 + 2−ϵn)-approximated by 2ϵn-size SAT-
oracle circuits for some ϵ > 0, then AM = NP.

Name: Page 8

CS 278: Computational Complexity Theory Fall 2025

Definition (SAT-oracle circuit). A SAT-oracle circuit is a Boolean circuit that, in
addition to standard logic gates (such as AND, OR, NOT), may also include special gates
that can compute the solution to instances of the SAT problem. That is, the circuit can
make queries to an oracle that, given an (encoding of) Boolean formula φ as input, outputs
whether φ is satisfiable. The size of a SAT-oracle circuit is defined as the total number of
gates (including standard and oracle gates).

Definition ((1/2+δ)-approximation of a function). Let f : {0, 1}n → {0, 1} be a
Boolean function, and C be a (possibly oracle) circuit. We say that C (1/2+δ)-approximates
f if

Pr
x∼Un

[C(x) = f(x)] ≥ 1

2
+ δ,

where the probability is over a uniformly random input x ∈ {0, 1}n and δ > 0 is a real
(possibly depending on n).

Remark. In the context of the hardness assumption for this problem, the statement is
that for some ϵ > 0, no SAT-oracle circuit of size 2ϵn can compute a function in E correctly
on more than a 1/2 + 2−ϵn fraction of the inputs.

Name: Page 9

CS 278: Computational Complexity Theory Fall 2025

Solution to Problem 1

Name: Page 10

CS 278: Computational Complexity Theory Fall 2025

Solution to Problem 2

Name: Page 11

CS 278: Computational Complexity Theory Fall 2025

Solution to Problem 3

Name: Page 12

CS 278: Computational Complexity Theory Fall 2025

Solution to Problem 4

Name: Page 13

CS 278: Computational Complexity Theory Fall 2025

Solution to Problem 5

Name: Page 14

	Problem 1: Downward self-reducibility
	Determinant and Permanent
	PSPACE-complete problem

	Problem 2: AC0[2] lower bound via probabilistic polynomials over F2
	Problem 3: Consequences of derandomization
	Problem 4: Instantiations of Nisan-Wigderson
	Problem 5: Derandomization of MA and AM
	Derandomization of MA.
	Derandomization of AM.

