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Abstract

In this note we discuss the recent developments on proving circuit lower bounds from non-
trivial derandomization (a.k.a., the algorithmic method). As the main focus, we will show
how to derandomize Merlin-Arthur protocols with ACC0 verifiers in nondeterministic quasi-
polynomial time infinitely often and consequently deduce ACC0 lower bounds.

We will first present a recent perspective on the algorithmic method that decomposes the
whole proof into three conceptual ingredients and show how these three ingredients lead to
new circuit lower bounds. Next, we will explain one of the ingredients in more detail: an
approach to unconditionally derandomize Merlin-Arthur protocols whose verifiers have small
circuits from a certain circuit class.

1 Introduction

Background. One important direction in complexity theory is to prove that certain explicit func-
tions (usually meaning functions in NP) cannot be computed by small circuits. Indeed, if one can
prove that a function in NP cannot be computed by poly-size general circuit, then one separates
NP from P.

Unfortunately, our knowledge for even constant depth circuits are very limited. Strong lower
bounds are known against AC0 [Ajt83, FSS84, Yao85, Hås89] and AC0[p] for a prime p [Raz87,
Smo87].1 However, progress has been slow since the 80s, and it had been difficult to prove lower
bounds even against AC0[6]. A decade ago, Williams [Wil11] proved NEXP 6⊆ AC0[6]. In 2018,
Murray and Williams [MW18] proved that NTIME[2polylog(n)] is not in AC0[6].2

In this note, we will give a different presentation of the AC0[6] lower bound from [MW18] as a
consequence of the unconditional derandomization of MAAC0[6] proved in [CLW20].

*This note is based on a talk given by the author at the Institute for Advanced Study on February 22, 2022. Feedbacks
are definitely welcome and please send them to wjmzbmr@gmail.com.

1AC0 denotes the class of polynomial-size constant-depth circuits with unbounded fan-in AND/OR/NOT gates.
AC0[m] denotes the class of polynomial-size constant depth circuits with unbounded fan-in AND/OR/NOT/MODm
gates. Here, MODm : {0, 1}n → {0, 1} outputs 1 if the number of 1’s in the input is not dividable by m, and 0 otherwise.

2Both [Wil11, MW18] indeed proved lower bounds against AC0[m] for every constant m ∈N (i.e., they proved lower
bounds against ACC0). To simplify the discussions, we will be focusing on AC0[6] in this note. But we remark that all
our results apply to AC0[m] for every constant m ∈N.
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Overview. The focus of this note is a very interesting bootstrapping theorem, which shows that
barely-faster-than-brute-force (non-trivial) derandomization of Merlin Arthur (MA) protocols im-
ply very fast derandomization of Merlin-Arthur protocols (see Section 2.1 for a definition of MA).
In particular, we will show how to derandomize Merlin-Arthur protocols with ACC0 verifiers
(see Section 2.1 for a precise definition) in non-deterministic quasi-polynomial time, and how this
derandomization implies circuit lower bounds for ACC0; see Figure 1 for an overview of this note.

Slow derandomization of MA

Fast derandomization of MA

Circuit Lower Bounds

Bootstrapping Theorem for MA (Section 4 and Section 5)

An Unconditional Lower Bound for MA (Section 3)

Figure 1: Structure of the proof: High-level

2 Derandomization of Merlin-Arthur protocols by NPRGs

To derandomize MA, we will rely on a generalization of pseudorandom generator (PRG) called
nondeterministic pseudorandom generator (NPRG). In this section we first recall some other rele-
vant notion3, and then motivate and introduce the concept of NPRG.

PRG. We say a function G : {0, 1}s → {0, 1}n is an ε-PRG for a class of n-input function F , if for
all f ∈ F ∣∣∣∣ Pr

x∈{0,1}n
[ f (x) = 1]− Pr

r∈{0,1}s
[ f (G(r)) = 1]

∣∣∣∣ ≤ ε.

We will always assume that a PRG is computable in time 2O(s), and the s is called the seed
length of G. Note that given an s(n)-seed PRG for all poly(n)-size circuits, one can estimate
acceptance probability of a poly(n)-size circuit in 2O(s) · poly(n) time, which implies BPP ⊆
TIME[2O(s(n))]. In particular, an O(log n)-seed PRG for poly(n)-size circuits implies BPP = P.

2.1 NTIME and MATIME

Let us also recall the definition of NTIME[T(n)]. For a time bound function T(n), a language
L ∈ NTIME[T(n)] if there is an algorithm V(x, y) such that |x| = n and |y| = T(n) and

x ∈ L⇔ ∃y ∈ {0, 1}T(|x|)V(x, y) = 1.

We also define NP = NTIME[poly(n)], NQP = NTIME[2polylog(n)].4

3We will assume basic familiarity with complexity theory (see, e.g., [AB09, Gol08]).
4More precisely, NP =

⋃
k∈N NTIME[nk]. NQP is defined similarly.
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MA is the randomized version of NP. We now recall the definition of MATIME[T(n)]. For a
time bound function T(n), a language L ∈ MATIME[T(n)] if there is an algorithm V(x, y, r) such
that |x| = n and |y| = |r| = T(n) and

x ∈ L⇒ ∃y ∈ {0, 1}T(|x|) Pr
r∈{0,1}T(|x|)

[V(x, y, r) = 1] ≥ 2/3,

and
x ∈ L⇒ ∀y ∈ {0, 1}T(|x|) Pr

r∈{0,1}T(|x|)
[V(x, y, r) = 1] ≤ 1/3.

We also define MA = MATIME[poly(n)].

MAC . In this note we will pay attention to the complexity of the verifiers in MA. Let C be a circuit
class (AC0,AC0[6], etc.). We say L ∈ MATIMEC [T(n)] if the corresponding verifier V above also
satisfies the additional condition below.

• For every x ∈ {0, 1}n and y ∈ {0, 1}T(n), V(x, y, ·) (the restriction of V to the randomness
part) has a T(n)-size C circuit.

The above is weaker than insisting that V itself has a T(n)-size C circuit, so it applies to more
languages and makes our results stronger. We also say L ∈ MATIMEC [T(n); R(n)], if the corre-
sponding verifier V only takes R(n) bits of randomness.

2.2 Nondeterministic PRG

Finally we are ready to introduce NPRG, which is weaker than PRG, but still suffices to deran-
domize MA.

An NPRG G = (GW, GP) is a pair of two functions GW : {0, 1}w → {0, 1} and GP : {0, 1}w ×
{0, 1}s → {0, 1}n; Here we call w the witness length. We always assume both GP and GW are
computable in 2O(s) time and w ≤ 2O(s).

We say that G is an ε-NPRG for a class of functions F , if the following two conditions hold.

1. For some u ∈ {0, 1}w, GW(u) = 1.

2. For every u ∈ {0, 1}w such that GW(u) = 1, GP(u; ·) is an ε-PRG for F .

We remark that an ε-PRG can be seen as an ε-NPRG with witness length 1 and GW always outputs
1.

Now, we note that an s(n)-seed-length w(n)-witness-length 1/10-NPRG G for T(n)-size C
circuits can be used to derandomize MAC [T(n)]. Formally, let L ∈ MAC [T(n)] and V(x, y, r) be
the corresponding randomized verifier. We construct a new deterministic verifier V ′ as follows:

• V ′ takes both y ∈ {0, 1}T(n) and u ∈ {0, 1}w(n) as witness. (i.e., V ′ takes T(n) + w(n) bits as
witness.)

• Accept if GW(u) = 1 and Prr∈{0,1}s [V(x, y, GP(u, r)) = 1] ≥ 1/2.

It is straightforward to verify that the above verifier V ′ implies that L ∈ NTIME[2O(s(n))]. We
remark that the concept of NPRG is already implicit in [IKW02]. Our definition is from the journal
version of [Che19].5

5See http://www.mit.edu/~lijieche/Che19-journal-version.pdf for the draft.
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Background on PRG. As it turns out, building PRG is even harder than proving circuit lower
bounds. After decades of work, we now have polylog(n)-seed-length PRGs for AC0 [NW94,
Hås89, Kel21, Lyu22] that matches the best known lower bounds against AC0.

However, no (1 − Ω(1)) · n-seed-length PRG is known for AC0[2]. The state-of-the-art for
AC0[2] is an n− n/polylog(n)-seed-length PRG by [FSUV13].

Recently, there are some new developments in constructing NPRGs. Specifically, [CR20] con-
structed i.o.- no(1)-seed-length NPRG for AC0[6], which implies that MAAC0[6] ⊆ i.o.-NTIME[2no(1)

].6

Later, [CLW20] gave an i.o.- polylog(n)-seed-length NPRG for AC0[6], which implies that MAAC0[6] ⊆
i.o.-NQP. In this note we will cover the intuitions behind [CLW20]’s NPRG construction.

3 Detailed Overview and From Derandomization to Circuit Lower Bounds

Now we are ready to give a more precise version of Figure 1.

Slow derandomization of MA

MATIMEC [2nε
; n] ⊆ NTIME[2n−nε

]

Fast derandomization of MA

MATIMEC [nlog n] ⊆ i.o.-NQP

Circuit Lower Bounds
NQP 6⊆ C

Bootstrapping Theorem for MA (Section 4 and Section 5)

An Unconditional Lower Bound for MA (Section 3)

Figure 2: Structure of the proof: Detailed Version

We elaborate below.

1. (Starting point: Non-trivial algorithm) When C = AC0[6], MATIMEC [2nε
; n] ⊆ NTIME[2n−nε

]
follows from [Wil11].7

2. (First⇒: Bootstrapping theorem for MAC )

The version for C being general circuits was proved by Williams [Wil13], which unfortu-
nately does not work when C = AC0[6]. The general bootstrapping theorem for all typical
circuit classes C was proved by Chen, Lyu, and Williams [CLW20].

Combining with the non-trivial derandomization of MAAC0[6], we now have

MATIME[nlog n]AC0[6] ⊆ i.o.-NQP. (1)

We will first cover the bootstrapping theorem for C being general circuits in Section 4, and
then show how to make it work for all typically circuit classes in Section 5.

6You can ignore the i.o.- notation for now. We will discuss this in details later.
7In fact, Williams gave a 2n−nε

-time deterministic algorithm for counting the number of satisfying assignments to an
n-input 2nε

-size AC0[6] circuit, which is stronger than what we need here.
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3. (Second⇒: Circuit Lower Bounds)

We prove unconditionally that there is language Lhard ∈ MATIME[nlog n]AC0[6] that is hard for
AC0[6] [Che22].8

We can then derandomize Lhard into NQP to prove that NQP is not in AC0[6].

3.1 An Important Technical Remark

The infinitely often issue. For readers that are interested in knowing more details, there is a cru-
cial technical issue in the argument above. Earlier we wanted the readers to ignore the “i.o.-” in (1),
but it now becomes crucial. Roughly speaking, it says that the derandomization of MA into NQP
only works for infinitely many input lengths, not all input lengths. When we say Lhard is hard for
AC0[6] circuits, it usually only means on infinitely many input lengths Lhard is hard. What if on all
those hard input lengths the derandomization does not work? Then we have no hardness at all!

Solution by [MW18]. This issue was addressed by Murray and Williams [MW18]. Roughly
speaking, they strengthened both the derandomization and the lower bounds so that the “hard-
ness input lengths” and the “good-for-derandomization input lengths” must intersect each other.

Formally, (1) means that for any Lhard ∈ MATIMEAC0[6][n
log n], there is an NQP language L̃ such

that for infinitely many n ∈ N, Lhard and L̃ agree with on n-bit inputs. And our issue is that Lhard

may happen to be not hard on those n.
Murray and Williams resolved the issue above as follows:

1. We indeed can get L̃ such that there are infinitely many n ∈N, for all m ∈ [n, nlog n], Lhard
m =

L̃m. In other words, L̃ agrees with Lhard on infinitely many segments of input lengths, such
that each segment has a quasi-polynomial stretch.

2. We can also prove a “robust AC0[6] lower bound”: for all large enough n ∈ N, there exists
m ∈ [n, nlog n], Lhard

m is hard for polynomial-size AC0[6].9

The two statements above together imply that for infinitely many m ∈ N, Lhard
m is hard and

Lhard
m = L̃m, hence L̃ has no polynomial-size AC0[6] circuits, and consequently NQP 6⊆ AC0[6].

In [Che22], we indeed prove that Lhard ∈ MATIME[nlog n]AC0[6] is “robustly hard” against
AC0[6].

Some personal thoughts. I indeed believe the infinitely often condition can be removed in (1)
and we can prove that MATIME[nlog n]AC0[6] ⊆ NQP. If that can be done, then we don’t have to
prove the robust circuit lower bounds. I leave it as a fascinating open problem.10

4 Bootstrapping theorem: Warm up

In this section, we prove the following warm-up theorem, which is implicit in [Wil13, Section 3.2].

8Strictly speaking this language also needs one bit of advice. We will not discuss this technicality in this note.
9This is the technical centerpiece of [MW18]. See also [Che19] for a simpler proof.

10Indeed, [CLW20] proved that MATIME[nlog n]AC0[6] ⊆ TIME[npolylog(n)]NP. But it seems hard to further improve

TIME[npolylog(n)]NP to NQP.
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Theorem 1 (Bootstrapping theorem: warm up). For every constant ε ∈ (0, 1), MATIME[2nε
; n] ⊆

NTIME[2n−nε
] implies that MA ⊆ i.o.-NQP.

In below, we will always fix ε to be a small enough constant.

4.1 Overview of the proof

We first give a high-level overview of our proof of Theorem 1.

Slow derandomization of MA

MATIME[2nε
; n] ⊆ NTIME[2n−nε

]
Fast derandomization of MA

MA ⊆ i.o.-NQP

Some unary NTIME[2n] ver-
ifier V has no easy witness

NPRG

Step I

Step II

Step III

Figure 3: Structure of the proof for Theorem 1

The no easy witness condition. We first need to explain the dashed rectangle in Figure 3. By a
unary NTIME[2n] verifier V, we mean that V is a verifier for a unary language L ⊆ {1n}n∈N such
that L ∈ NTIME[2n]. In other words,

1n ∈ L⇔ ∃y ∈ {0, 1}2n
V(1n, y) = 1.

In above, V(x, y) takes an input x and a witness y such that |x| = n and |y| = 2n, runs in roughly
2n time.

We say “V has easy witnesses”, if

• (V has easy witnesses) for all sufficiently large n ∈ N, 1n ∈ L implies that V(1n, y) = 1 for
some y ∈ {0, 1}2n

(interpreted as an n-bit function) that is the truth-table of a 2nε
-size circuit

C : {0, 1}n → {0, 1}.

By “V has no easy witness”, we mean the above does not hold. Equivalently, it means

• (V has no easy witness) for infinitely many n ∈ N, 1n ∈ L and V(1n, y) = 0 for all y ∈
{0, 1}2n

(interpreted as an n-bit function) that is the truth-table of a 2nε
-size circuit. We call

those n hard for V.

We also call above an witness lower bound for V against 2nε
-size circuits.

4.2 Step II and Step III

Now, we note that Step III, from (i.o.-) NPRG to the derandomization of MA is already explained
in Section 2.2. Below we first discuss the more straightforward Step II, before moving to the most
interesting part Step I.
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Step II: Witness lower bound ⇒ NPRG Construction. Given a V that has no easy witnesses.
We can construct an NPRG G = {Gn = (Gn

W, Gn
P)}n∈N as follows:

• Gn
W : {0, 1}2n → {0, 1}: given u ∈ {0, 1}2n

, outputs V(1n, u).

For all hard n for V, we know (1) Gn
W accepts some truth-tables and (2) Gn

W(u) = 1 means that
fu : {0, 1}n → {0, 1} (u treated as an n-bit function) cannot be computed by 2nε

-size circuits.

PRG requires average-case hardness and worst-case-to-average-case reduction. Given f : {0, 1}n →
{0, 1} that is 1/2 + 2−nε

hard against 2nε
-size C circuits,11 using the Nisan-Wigderson [NW94]

PRG construction, we have a PRG NW f : {0, 1}poly(n) → {0, 1}S that fools S-size C circuits, for
some S = 2Ω(nε).

The problem is that Gn
W(u) = 1 only means fu is hard in the worst-case. Lucikly, for general

circuits we have worst-case-to-average-case reductions [STV01], so given f that cannot be com-
puted by 2nε

-size circuits, we can get Amp( f ) : {0, 1}O(n) → {0, 1} that is 1/2 + 2−nε
hard against

2nε
-size circuits.
We define Gn

P(u, r) := NWAmp( fu)(r). For all the hard n for V, we know that Gu
W(u) = 1 implies

that fu is worst-case hard and hence Amp( fu) is average-case hard, and therefore NWAmp( fu) is a
PRG.

Finally, look at the parameters, the seed length is poly(n) = polylog(S), where S = 2nε
is the

size of the circuits being fooled. So we have a polylog(S) i.o.- NPRG fooling S-size circuits.

4.3 Step I: MATIME[2nε
; n] ⊆ NTIME[2n−nε

]⇒ No easy witness for some verifier V

Finally, we are ready to establish Step I. Here we wish to find a verifier V for a unary language
L ∈ NTIME[2n] such that V has no easy witness.

Intuitively, the language L should be as hard as possible, this leads us to apply the following
unary NTIME hierarchy theorem.

NTIME hierarchy theorem [Žák83]. There is a unary language L ⊆ {1n : n ∈ N} such that
L ∈ NTIME[2n] and L /∈ NTIME[2n/n].

In some sense, L is the hardest unary language in NTIME[2n]! And that is why it makes sense
to start from it.

PCP theorem. We also need to pick a verifier V for L. We will apply the famous PCP theo-
rem [ALM+98, AS98]. Roughly speaking, PCP theorem implies that one can spend only polynomial-
time to check an exponentially long proof, by only accessing very few bits in the proof.

Specifically, we will use a very efficient version of PCP theorem (see, e.g., [BV14]), which im-
plies that there is a super efficient verifier VPCP for L, such that the following holds:

1. VPCP(1n)O(r) expects an oracle O : {0, 1}n → {0, 1} and takes n bits of randomness r ∈
{0, 1}n, and runs in poly(n) time.12

2. 1n ∈ L⇒ ∃O : {0, 1}n → {0, 1}

Pr
r∈{0,1}n

[VPCP(1n)O(r) = 1] = 1.

11Here we mean that for all 2nε
-size C circuits C : {0, 1}n → {0, 1}, we have Prx∈{0,1}n [ f (x) = C(x)] < 1/2 + 2−nε

.
12Strictly speaking O should have n + O(log n) bits as input instead of only n bits, and also needs n + O(log n) bits

of randomness. We pretend that n bits are enough to simplify the presentation.
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3. 1n /∈ L⇒ ∀O : {0, 1}n → {0, 1}

Pr
r∈{0,1}n

[VPCP(1n)O(r) = 1] ≤ 1/3.

We now claim that the verifier V(1n, u) that outputs 1 if and only if Prr∈{0,1}n [VPCP(1n) fu(r) =
1] = 1, has no easy witness. Note that V(1n, u) runs in roughly 2n deterministic time, by enumer-
ating all r ∈ {0, 1}n.

Let us suppose for the contradiction that V(1n, u) has easy witness. In other words, it means

• (EW condition): For all sufficiently large 1n ∈ L, ∃ 2nε
-size circuit C : {0, 1}n → {0, 1} such

that
Pr
r
[VPCP(1n)C(r) = 1] = 1.

In the following, we will show that

(EW)
~

=⇒ L ∈ MATIME[2nε
; n] }

=⇒ L ∈ NTIME[2n−nε
], (2)

which is a contradiction to that L /∈ NTIME[2n/n] by NTIME hierarchy. Note that } follows from
the assumption MATIME[2nε

; n] ⊆ NTIME[2n−nε
], so below we only need to establish ~.

An algorithm APCP putting L ∈ MATIME[2nε
; n] assuming EW. To show ~, we define the fol-

lowing Merlin-Arthur algorithm APCP that attempts to solve L.

1. Given an input 1n.

2. Guess a 2nε
-size circuit C : {0, 1}n → {0, 1}.

3. Draw r ∈ {0, 1}n and output VPCP(1n)C(r).

It is not hard to verify that (EW) indeed implies that APCP solves L, and that APCP is an
MATIME[2nε

; n] algorithm. This completes the proof of (2), leading to a contradiction. Hence
(EW) is false and we proved that V has no easy witness, thereby completing the proof of Step I
and also Theorem 1.

Why the argument above does not generalize to all typical circuit classes. Next we briefly
discuss why the above does not work directly for all typical circuit classes C . Suppose we only
assume MATIMEC [2nε

; n] ⊆ NTIME[2n−nε
], and in APCP we guess 2nε

-size C circuits instead of
general circuits, the above proof still works in the sense that it now gives us a verifier V that has
no 2nε

-size C witness.
However, we may not have worst-case-to-average-case reduction for C circuits (for example AC0[6]

or AC0[2]), so we don’t know how to get a strong average-case hard function against C , which is
required by PRG construction. But still, this gives us a verifier who only accepts truth-tables with
high worst-case AC0[6] circuit complexity. This gives us an AC0[6] witness lower bound and it is
proved in [Wil16].

5 Bootstrapping Theorem: for all typical circuit classes

As discussed above, we will need strong average-case lower bounds against C circuits to construct
PRGs fooling C circuits. Hence, we will need some tools for proving average-case circuit lower
bounds.
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Linear sums. Let C be a circuit class. We define Sum ◦ C as a class of real-output functions H
that can be written as

H(x) =
m

∑
i=1

αi · Ci(x),

where αi ∈ [−1, 1] and Ci is a C circuit. We then define the size of H as

SIZE(H) := ∑
i∈[m]

SIZE(Ci).

We also require that H(x) ∈ [0, 1] for all x ∈ {0, 1}n. This is indeed very important and we will
see why shortly.

An XOR Lemma based on linear sums [Lev87, CLW20, CL21]. For a Boolean function f : {0, 1}n →
{0, 1}, we define f⊕k : ({0, 1}n)k → {0, 1} as

f⊕k(x1, x2, . . . , xk) :=
⊕
i∈[k]

f (xi).

We need the following lemma.

Lemma 2. Let f : {0, 1}n → {0, 1}. If

• for all Sum ◦ C circuits H : {0, 1}n → [0, 1] with SIZE(H) ≤ 10ns
ε2 , it holds that

E
x∈{0,1}n

|H(x)− f (x)| > 0.01.

(We will abbreviate the condition above as f is 0.01-hard against Sum ◦ C circuits of size 10ns
ε2 .)

Then

• f⊕k is (1/2 + ε)-hard against s-size C circuits, for some k = Θ(log ε−1).

Remark. Let us remark a bit on the XOR Lemma above. This is somewhat implicit in the Levin’s
proof [Lev87] of the XOR Lemma, and some researchers have been aware that Levin’s proof gives
a linear sum reconstruction. This fact was pointed out to me first by Shuichi Hirahara and then by
Ronen Shaltiel. To the best of our knowledge, Lemma 2 first explicitly formalized in [CLW20].

Later, I and Lyu [CL21] gave a completely different proof of Lemma 2, which is based on
a careful application of the linear programing duality. The new proof gives a very interesting
generalization of the hardcore-based proof of XOR Lemma by Impagliazzo [Imp95], and can be
derandomized in the same way of the derandomized XOR Lemma by [IW97].

Now we are ready to formally state our bootstrapping theorem for all typical circuit classes.

Theorem 3. For every constant ε ∈ (0, 1), MATIMESum◦C [2nε
; n] ⊆ NTIME[2n−nε

] implies that MAC ⊆
i.o.-NQP.13

We have to clarify what do we mean by a Sum ◦C verifier in the notation MATIMESum◦C [2nε
; n]:

when the verifier outputs a real value α ∈ [0, 1], we interpret it as accepting with probability α.
Note that we crucially used the promise that a Sum ◦ C always outputs values from [0, 1].

13An acute reader will notice that we “lied” in Section 3 and Figure 2 (there the condition was stated as
MATIMEC [2nε

; n] ⊆ NTIME[2n−nε
]). We made that choice since we had not define Sum ◦ C then.

9



5.1 Overview of the argument.

Similarly to Figure 3, the proof of Theorem 3 has the following structure.

Slow derandomization of MASum◦C
MATIMESum◦C [2nε

; n] ⊆
NTIME[2n−nε

]

Fast derandomization of MAC

MAC ⊆ i.o.-NQP

Some unary NTIME[2n] verifier V
has no approx. Sum ◦ C witness

NPRG for C

Step I

Step II

Step III

Figure 4: Structure of the proof for Theorem 3

We remark that Williams’ algorithm from [Wil14] also implies that

MATIMESum◦AC0[6][2
nε

; n] ⊆ NTIME[2n−nε
],

so that combining with Theorem 3, we have MAAC0[6] ⊆ i.o.-NQP.

No approx. Sum ◦C witness. Now we first explain what the dashed rectangle means in Figure 4.
By “unary NTIME[2n] verifier V has approx. Sum ◦ C witnesses”, we mean that

• for all sufficiently large n ∈ N, 1n ∈ L ⇒ V(1n, u) = 1 for some u ∈ {0, 1}2n
such that

Ex∈{0,1}n | fu(u)− H(x)| ≤ 0.01 for some 2nε
-size Sum ◦ C circuit H : {0, 1}n → [0, 1]. (i.e., V

has witnesses that is 0.01-close to 2nε
-size Sum ◦ C circuits.)

By “unary NTIME[2n] verifier V has no approx. Sum ◦ C witness”, we mean the above condi-
tion does not hold. Equivalently

1. for infinitely many n ∈ N, 1n ∈ L and V(1n, u) = 0 for all u ∈ {0, 1}2n
(interpreted as an

n-bit function) that is 0.01-close to a 2nε
-size Sum ◦ C circuit H : {0, 1}n → [0, 1]. Again, we

call those n hard for V.

Step II and Step III. Again, Step III follows from the definition of NPRG (see Section 2.2). For
Step II, now we can define Gn

W(u) = V(1n, u) and then set Gn
P( f , r) := NW f⊕Θ(nε)

(r).
Now, for a hard n for V, we know that Gn

W(u) = 1 for some u, and for every u satisfying
Gn
W(u) = 1, its corresponding n-bit function fu is 0.01-hard against Sum ◦ C circuits of size 2nε

. By
Lemma 2, we then know f⊕Θ(nε)

u is 1/2 + 2−nε
-hard against 2nε

-size C circuits, and hence Gn
P(u, ·)

is a PRG fooling C circuits.

5.2 Step I: deriving no approx. witness

We use a similar setup as in Section 4. Recall that L is a unary language that is in NTIME[2n] \
NTIME[2n/n], and VPCP is its PCP verifier.
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We similarly claim that the verifier V(1n, u) that outputs 1 if and only if Prr∈{0,1}n [VPCP(1n) fu(r) =
1] = 1, has no approx. Sum ◦ C witness. Again, note that V(1n, u) runs in roughly 2n time.

Assuming V has approx. Sum ◦ C witnesses, we will show that

L ∈ MATIMESum◦C [2nε
; n] ⊆ NTIME[2n−nε

],

a contradiction to our assumption that L /∈ NTIME[2n/n].

Easy-witness condition ẼW. Formally, we assume the following condition for the sake of con-
tradiction.

• For all sufficiently large 1n ∈ L, there exists f : {0, 1}n → {0, 1} such that Prr[VPCP(1n) f (r) =
1] = 1, and a 2nε

-size Sum ◦ C circuit H : {0, 1}n → [0, 1] such that Ex | f (x)− H(x)| ≤ 0.01.

Algorithm ÃPCP. To put L ∈ MATIMESum◦C [2nε
; n], we define the following algorithm.

1. Given an input 1n.

2. Guess a 2nε
-size Sum ◦ C circuit H : {0, 1}n → [0, 1].

3. Draw r ∈ {0, 1}n, output VPCP(1n)H(r) ∈ [0, 1].

How to treat H as Boolean oracle? We define a probabilistic oracle H̃, when querying x, H̃(x)
output 1 with probability H(x), and 0 otherwise. (Without loss of generality, we can assume
that VPCP never queries the same position more than once.) VPCP(1n)H(r) is then defined to
be the probability that V(1n) accepts given H̃ as oracle on input r.

Now we need to establish the following two conditions.

1. ÃPCP is in MATIMESum◦C [2O(nε); n].

2. ÃPCP solves L assuming ẼW.

Keeping the verifier in Sum ◦ C . The first condition can be achieved by making VPCP(1n) so
simple that VPCP(1n)H(r) can still be implemented by a Sum ◦ C circuit, given that H ∈ Sum ◦
C . We are not going to cover the details here, and the real proof is more complicated than just
described because we actually do not have such a PCP. We managed to resolve this issue by a
careful use of PCP of proximity in [CLW20].

Smoothness condition on VPCP. To show that ÃPCP solves L assuming ẼW, we will need the
PCP to satisfy the following smoothness condition:

• If Prr∈{0,1}n [VPCP(1n)O(r) = 1] = 1, then for every H : {0, 1}n → [0, 1] such that Ex | f (x)−
H(x)| ≤ 0.01, Er∈{0,1}n [VPCP(1n)H(r)] ≥ 2/3.

The above condition roughly says that if a proofO can make VPCP always accepts, then a slight
corrupt version of O can still make VPCP accept with a good probability.

We can see that the smoothness condition implies that, if ẼW holds, then ÃPCP solves L.

11



An important issue. Actually there is a hidden issue with the whole argument above. When
ÃPCP guesses a Sum ◦ C circuit H, it simply guesses a list of m coefficient/circuit pairs αi and
Ci. It is not clear how to efficiently verify the guessed H := ∑i∈[m] αiCi satisfies the promise that
H(x) ∈ [0, 1] for all x, since a brute-force verification takes 2n time at least.

Fortunately, there is a way to perform some efficient check on H to make sure H is “close
enough” to functions from {0, 1}n → [0, 1], and the whole argument still works. See [CLW20] for
details.
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