
CS 278: Computational Complexity Theory
Homework 1

Due: September 26 2025

Fall 2025

Instructions:

• Collaboration is allowed but solutions must be written independently.

• Please write your solutions in a LATEX document.

• Please submit your solutions via an email to lijiechen@berkeley.edu, the subject line
should be “CS 278: Homework 1 – [Your Name]”.

• Please Use “CS 278: Homework 1 – [Your Name].pdf” as the name of your homework.

• Please submit your solutions by 11:59PM on September 26, 2025, Pacific Time.

• Late submissions get a penalty of 10% per day, consult the lecturer if you need exten-
sions. (i.e., being late by 3 days gets 0.93 = 0.729 fraction of the score.).

• The maximum score of this homework is 160. There are 4 problems, and each problem
is worth 40 points. If you get n points, your score for this homework is

a1 =
n

100
× 12.5

• Let a1, a2, a3, a4 be the scores for the 4 homeworks, your final grade of homework is
min(a1 + a2 + a3 + a4, 50).

• In other words, you don’t have to solve all the problems to get a perfect score on
homeworks.
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1 Problem 1: Non-deterministic time hierarchy theo-

rem with bounded guess, revisited

In the class, we proved the following theorem:

Theorem 1 (Non-deterministic time hierarchy theorem with bounded guess). Let T,G,W : N →
N be time-constructible functions such that G(n) = o(T (n)) and W (n) = o(n). Then there is
a language L ∈ NTIME[T (n)] but L is almost-everywhere separated from NTIMEGUESS[G(n),W (n)].

Part (a). 20 pts Explain why the almost-everywhere separation against NTIMEGUESS[G(n),W (n)]
proved above does not work for NTIME[G(n)], which part of the proof fails? (i.e., if you
attempt to use the same proof to prove that NTIME[T (n)] is almost-everywhere separated
from NTIME[G(n)], which part of the proof fails?)

Part (b). 20 pts Strengthen the proof to show an almost-everywhere separation between
NTIMEGUESS[T (n), n] and NTIMEGUESS[G(n),W (n)]?
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2 Solution to Problem 1

2.1 Part (a)

2.2 Part (b)
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3 Problem 2: Robustly-often NTIME Hierarchy (40

pts)

We mentioned that the non-deterministic time hierarchy theorem only works either infinitely
often, or almost everywhere, but only against the weak class NTIMEGUESS[T (n), n/10].

Problem 2 asks you to prove the following theorem, which shows that it is possible to
have a separation that is stronger than infinitely often (but weaker than almost everywhere),
that holds for the general class NTIME[T (n)].

Theorem 2. Let T (n) = nK be a polynomial where K ∈ N is a constant. There is a
language L ∈ NTIME[T (n)2] such that for every L′ ∈ NTIME[T (n)], for every sufficiently
large n0 ∈ N, there exists an n ∈ [n0, T (n0)

1.5] such that Ln ̸= L′
n, here Ln denotes the

restriction of L to input length n (Ln = {x ∈ L | |x| = n}).

Hint 1. The issue of applying the proof for NTIMEGUESS[T (n), n/10] to NTIME[T (n)] is
that the hard machine is going to take the witness as part of the n-bit input, NTIME[T (n)]
has T (n) bit witnesses, so it’s impossible to include those in the n-bit input.

But you may be able to deal with that by using the ideas from the original proof of NTIME
hierarchy theorem!
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4 Solution to Problem 2
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5 Problem 3: Refuter for Theorem 1

Theorem 1 implies that, for the corresponding hard language L ∈ NTIME[T (n)], for every
NTIMEGUESS[G(n),W (n)] machine M , there exists an integer NM ∈ N such that for all
n ≥ NM , there exists an input xn ∈ {0, 1}n such that Ln(xn) ̸= M(xn).

For Problem 3, to make things easier, we will assume that both T (n) and G(n) from
Theorem 1 are polynomials in n.

Your task is to construct a “refuter” for Theorem 1, that is, a machine R that, it takes
the description of a NTIMEGUESS[G(n),W (n)] machine M , as well as an input length n
as input, and outputs a string xn = R(⟨M⟩, n) ∈ {0, 1}n such that L(xn) ̸= M(xn), for
sufficiently large n ≥ NM .

In a sense, we are asking to make the proof of Theorem 1 “constructive”, in the sense
that not only we want these xn ∈ {0, 1}n to exist, but we also want to be able to construct
them by an explicit algorithm.

Your algorithm R should be an NP-oracle polynomial time deterministic machine. That
is, it can make NP-oracle queries to some oracle O ∈ NP, and it can make polynomial
number of queries to O, and runs in deterministic polynomial time.

Part (a). 20 pts Suppose you are given query access to a list a1, a2, . . . , aN of N integers,
and you are promised that a1 ̸= aN . Design a deterministic algorithm that finds an index i
such that ai ̸= ai+1, using at most O(logN) queries to the list.

Part (b). 20 pts Construct the required refuter algorithm R.
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6 Solution to Problem 3

6.1 Part (a)

6.2 Part (b)
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7 Relativization Barrier for P vs BPP

We now explore the relativization barrier for the P vs BPP problem. First, let’s recall the
definitions of these complexity classes.

We say a langauge L is in P if there exists a deterministic polynomial-time Turing machine
M such that for all x:

• If x ∈ L, then M(x) = 1

• If x /∈ L, then M(x) = 0

We say a langauge L is in BPP if there exists a deterministic polynomial-time Turing
machine M and a polynomial p : N → N such that for all x:1

• If x ∈ L, then Prr∈{0,1}p(|x|) [M(x, r) = 1] ≥ 2/3

• If x /∈ L, then Prr∈{0,1}p(|x|) [M(x, r) = 1] ≤ 1/3

Let O : {0, 1}∗ → {0, 1} be an oracle. We can define the classes PO and BPPO analo-
gously, by changing the machine M from definition to O-oracle Turing machine MO.

Part (a). 15 pts Show that there exists an oracle O1 such that PO1 = BPPO1 .

Part (b). 15 pts Show that there exists an oracle O2 such that PO2 ̸= BPPO2 .

Part (c). 10 pts Show that there exists an oracle O3 such that PO3 = BPPO3 , yet
PO3 ̸= NPO3 .

1Note that here M itself is deterministic, the randomness is over the second input r ∈ {0, 1}p(|x|).
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8 Solution to Problem 4

8.1 Part (a)

8.2 Part (b)

8.3 Part (c)
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