CS 278: Computational Complexity Theory Lecture Notes - September 4, 2025

Lecturer: Lijie Chen

Fall 2025

Definition 1 (Non-deterministic time with bounded guess). For a function $T, G : \mathbb{N} \to \mathbb{N}$, we define NTIMEGUESS[T(n), G(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)) with making at most G(n) non-deterministic guesses.

- That is, $L \in NTIMEGUESS[T(n), G(n)]$ if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:
 - M decides L (i.e., M accepts x if and only if $x \in L$)
 - For all inputs x of length n, M halts within $c \cdot T(n)$ steps and makes at most G(n) non-deterministic guesses.

Theorem 2 (Non-deterministic time hierarchy theorem with bounded guess). Let $T, G, W : \mathbb{N} \to \mathbb{N}$ be time-constructible functions such that G(n) = o(T(n)) and W(n) = o(n). Then there is a language $L \in NTIME[T(n)]$ but L is almost-everywhere separated from NTIMEGUESS[G(n), W(n)].

Proof. Let M be a machine from NTIMEGUESS[G(n), W(n)]. That is, there is a deterministic machine D_M that takes $x \in \{0,1\}^n$ and $w \in \{0,1\}^{W(n)}$, runs in O(G(n)) time such that M(x) = 1 if and only if $D_M(x, w) = 1$ for some $w \in \{0,1\}^{W(n)}$. Here we call w the witness.

For $n \geq 10 \cdot |\langle M \rangle|$ and $w \in \{0,1\}^{n/10}$, we define $\langle M, w \rangle_n$ to be an encoding of the pair $\langle M \rangle$ (the description of M) and w (the witness), such that $\langle M, w \rangle_n \in \{0,1\}^n$.

For a $M \in \text{NTIMEGUESS}[G(n), W(n)]$, we will construct a hard language $H \in \text{NTIME}[T(n)]$ such that for every $n \geq 10 \cdot |\langle M \rangle|$, it holds that M does not compute H on inputs of length n.

Let $w_1, \ldots, w_{2^{n/10}}$ be a sequence of all possible strings of length n/10. For simplicity, we assume D_M takes exactly n/10 bits as witness.

We define H as follows:

$$H(x) = \begin{cases} M(\langle M, w_{i+1} \rangle_n) \wedge [D_M(\langle M, w_1 \rangle_n, w_i) = 0] & \text{if } x = \langle M, w_i \rangle_n \text{ for some } i \in [1, 2^{n/10}) \\ [D_M(\langle M, w_1 \rangle_n, w_{2^{n/10}}) = 0] & \text{if } x = \langle M, w_{2^{n/10}} \rangle_n \\ 0 & \text{otherwise} \end{cases}$$

Here, $[D_M(\langle M, w_1 \rangle_n, w_i) = 0]$ means we treat $D_M(\langle M, w_1 \rangle_n, w_i) = 0$ as a proposition, $[D_M(\langle M, w_1 \rangle_n, w_i) = 0]$ is true if " $D_M(\langle M, w_1 \rangle_n, w_i) = 0$ " holds.

Note that $H \in \text{NTIME}[T(n)]$ since G(n) = o(T(n)).

Now, for the sake of contradiction, suppose M computes H on all n-bit inputs. Then for every $i \in [1, 2^{n/10})$, we have

$$H(\langle M, w_i \rangle_n) = H(\langle M, w_{i+1} \rangle_n) \wedge [D_M(\langle M, w_1 \rangle_n, w_i) = 0]$$

and also

$$H(\langle M, w_{2^{n/10}} \rangle_n) = [D_M(\langle M, w_1 \rangle_n, w_{2^{n/10}}) = 0]$$

Chaining the above together, we have

$$H(\langle M, w_1 \rangle_n) = \bigwedge_{i=1}^{2^{n/10}} [D_M(\langle M, w_1 \rangle_n, w_i) = 0]$$

Reading the right side above, it is true if and only if $D_M(\langle M, w_1 \rangle_n, w_i) = 0$ for all $i \in [1, 2^{n/10}]$, which means M rejects the input $\langle M, w_1 \rangle_n$.

Therefore, we have $H(\langle M, w_1 \rangle_n) = \neg M(\langle M, w_1 \rangle_n)$, which contradicts the assumption that M computes H on all n-bit inputs.