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In this talk

   1.   Background

   2.   Our results

   3.   A taste of techniques

>   the setting



1 Background
simple and fast derandomization



   >   We need randomness

   >   crypto, learning, sublinear-time algs...

   >   Conjecture: We don’t need randomness to efficiently

   1.   solve decision problems

   2.   solve “verifiable” search problems

Randomness in computation
>   context



   >   BPP formally defined in [Gill’77]

   >   Immediately conjectured to “sort-of” equal P

BPP ≟ P
>   historic recap



   >   … in fact, paper even raises stronger conjecture:

BPP ≟ P
>   historic recap



   >   Hard functions    ⇒ efficient pseudorandomness 
[Yao,’82, BM’84]

          ⇒ derandomization of BPP

[NW’94, IW’99, STV’01, SU’01, Uma’03, and others]

   >   Conditioned on lower bounds, we have an answer

Hardness-to-randomness
>   more recent history
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Hardness-to-randomness
>   more recent history

S

T

poly(n)

poly(n)

2n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPP ⊆ TIME[T]

high-end



   >   Smooth trade-off from [Uma’03] gives T ≈ 2O( S^-1(n) )

   >   Extremal point established in [IW’99]:

TIME[ 2n ] ⊄ ioSIZE[ 2.01n ]

⇒ BPP = P

⇒ BPTIME[ T ] ⊆ TIME[ TO(1) ]

Hardness-to-randomness
>   more recent history



   >   Doron, Moshkovitz, Oh, and Zuckerman (FOCS 2020) 
recently asked: Can we do it faster?

BPTIME[ T ] ⊆ TIME[ Tc ] for a small c?

   >   Classical results can yield “reasonable” c when scaled-up

   >   Diff between (say) c = 10 and c = 3 is substantial !

Superfast derandomization
>   … snap back to now



   >   What is the actual cost of simulating randomness?
>   new area to explore
>   theoretical basis not formed yet

   >   The obvious “end-goal” question:

Can we simulate randomness with no cost?

Superfast derandomization
>   … snap back to now



   >   Main result of [DMOZ’20]:

BPTIME[ T ] ⊆ TIME[ T2.01 ]

       conditioned on

TIME[ 2n ] ⊄ ioMASIZE[ 2.99n ]
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quadratic overhead
might be possible



   >   Main result of [DMOZ’20]:

BPTIME[ T ] ⊆ TIME[ T2.01 ]

       conditioned on

TIME[ 2n ] ⊄ ioMASIZE[ 2.99n ]

Superfast derandomization
>   … snap back to now

hypothesis seems 
“too strong”



Superfast derandomization
>   … snap back to now

hardness derand.  overhead

[IW’99] TIME[ 2n ] ⊄ 
ioSIZE[ 2.01n ]

TO(1)

[DMOZ’20] TIME[ 2n ] ⊄ 
ioMASIZE[ 2.99n ]

T2.01



Superfast derandomization
>   … snap back to now

   >   Takeaways:

1.   Superfast derand possible, under assumptions!

2.   Can we do better than quadratic overhead?

3.   We need stronger theoretical foundations 

>   hypothesis seems “too strong” & a bit non-standard



2 Our results
simple and fast derandomization
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Preliminary peek at our results

hardness derand.  overhead

[IW’99] TIME[ 2n ] ⊄ 
ioSIZE[ 2.01n ]

TO(1)

[DMOZ’20] TIME[ 2n ] ⊄ 
ioMASIZE[ 2.99n ]

T2.01

this work one-way funcs &
non-uniformly

strong time 
hierarchy

n ⋅ T1.01

n1.01 ⋅ T T ≤ 2n^o(1)

n0.01 ⋅ T T = poly(n)
on average



Non-uniformly-strong time hierarchy

   >   Classical hypotheses:

TIME[ 2n ]   hard for   ioSIZE[ 2.01⋅n ] [IW’99]

>   our first main result



Non-uniformly-strong time hierarchy
>   our first main result

   >   Classical hypotheses:

TIME[ 2n ]   hard for   ioSIZE[ 2.01⋅n ] [IW’99]

non-uniformity isn’t enough 
to speed up all algorithms



Non-uniformly-strong time hierarchy
>   our first main result

   >   Classical hypotheses:

TIME[ 2n ]   hard for   ioSIZE[ 2.01⋅n ] [IW’99]

(no “magic speedup advice” 
tailored to input length)



Non-uniformly-strong time hierarchy
>   our first main result
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Non-uniformly-strong time hierarchy
>   our first main result

   >   Classical hypotheses:

TIME[ 2n ]   hard for   ioSIZE[ 2.01⋅n ] [IW’99]

   >   Our hypotheses:

TIME[ 2kn ]   hard for   ioTIME[ 2.99kn ] / 2.99n

large time
near-maximal advice



Non-uniformly-strong time hierarchy
>   our first main result

   >   Classical hypotheses:

TIME[ 2n ]   hard for   ioSIZE[ 2.01⋅n ] [IW’99]

   >   Our hypotheses:

TIME[ 2kn ]   hard for   ioTIME[ 2.99kn ] / 2.99n

   >   Natural scale-up of classical hypotheses



Near-linear time derandomization
>   our first main result

   >   Thm 1: Assume non-uniformly secure OWFs. Then, 

∀ε>0 ∃δ>0   st  ∀T ∃k=kT=O(1/ε) for which

BPTIME[ T ] ⊆ TIME[ n ⋅ T1+ε ]

       conditioned on

TIME[ 2kn ] ⊄ ioTIME[ 2(k-δ)⋅n ] / 2(1-δ)⋅n



Additional properties of the result
>   understanding superfast derandomizatoin

   >   The hardness assumption is necessary (when using PRGs)

>   … hypothesis is optimal for “black-box” techs up to OWFs

   >   Proof of Thm 1 is intuitive and technically non-involved

>   combining new insights with known technical tools



Complementing the first result

   >   Thm 2: Assume subexp-non-uniformly secure OWFs. Then, 

∀ε>0   ∃δ, k=O(1/ε)   st  ∀ time T ≤ 2o(n)

BPTIME[ T ] ⊆ TIME[ n1+ε ⋅ T ]

       conditioned on

TIME[ 2δ⋅n ⋅ T’ ] ⊄ ioTIME[ T’ ]/2(1-δ)⋅n

where T’(n) = T(2(1-δ)⋅n)⋅2O(δ⋅n)

>   zooming-in on the precise overhead



   >   Thm 2 (reminder): Under assumptions...
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   >   Thm 2 (reminder): Under assumptions...

BPTIME[ T ] ⊆ TIME[ n1+ε ⋅ T ]

Complementing the first result
>   zooming-in on the precise overhead

do we have to pay “ × n”?

(textbook bpp ⊆ p/poly 
has this overhead)



   >   Thm 2 (reminder): Under assumptions...

BPTIME[ T ] ⊆ TIME[ n1+ε ⋅ T ]

   >   Prop 3: Conditioned on #NSETH, ∀ε>0 

BPTIME[ T ] ⊄ TIME[ n1-ε ⋅ T ]  (∀ T = poly)

   >   #NSETH: We can’t count solutions of a given k-SAT 
formula in NTIME[2(1-ε)⋅n] (assuming suff. large k=k ε)

Complementing the first result
>   zooming-in on the precise overhead



   >   Thm 4: Assume non-uniformly secure OWFs. Then, 

∀ε>0   ∃δ, k=O(1/ε)   st  ∀ time T(n)=poly(n)

BPTIME[ T ] ⊆ TIME[ nε ⋅ T ] on average

       conditioned on

TIME[ 2δ⋅n ⋅ T’ ] ⊄ ioTIME[ T’ ] / 2(1-δ)⋅n

where T’(n) ≈ T(2(1-δ)⋅O(1/ε)⋅n)⋅2O(δ⋅n)

Average-case derandomization
>   bypassing this barrier



   >   Thm 4: Under assumptions ...

BPTIME[ T ] ⊆ TIME[ nε ⋅ T ] on average

   >   … with respect to all T-time samplable distributions

   >   … with success probability 1-n-ω(1)

>   L ∈ BPTIME[T] ⇒  one alg AL “looks correct” to all T-time dist.

Average-case derandomization
>   bypassing this barrier



Extra goodies in the paper
>   technical insights & results intertwined in our proofs

   1.   Easy way to bypass a formidable-looking barrier

   2.   Simplify & extend [DMOZ’20]: Derandomization with
overhead c ∈ {1,2,3,4} + ε from corresponding assump.

   3.   General simplification of a well-known PRG paradigm
>   ”extract-from-pseudoentropic string” as a 
    special case of an easy-to-analyze strategy
>   new light on avoiding the hybrid argument

   4.   Batch-computable PRGs vs amortized time-complexity



   >   Takeaways:

1.   Derandomization with near-linear overhead 
is possible, under natural assumptions

2.   Hypotheses are different than in [DMOZ’20] and
support trade-offs with conclusion

3.   Broadening the emerging theoretical basis for 
superfast derandomization

Meaning of our results
>   zooming out



Near-linear time derandomization

   >   Randomness might be nearly useless
>   time overhead is minor
>   derandomization is simple & solves search problems

   >   Derandomize “better-than-brute-force” algorithms

   >   Lower bds for DTIME ⇒ lower bds for BPTIME
>   SETH ⇒ rSETH (assuming Thm 1 for arbitrarily small savings)

>   in a world of BPTIME[ T ] ≈ TIME[ T ]



3 A taste of techniques
observations & proof sketches



Technical roadmap

   >   Bypassing the seed-length barrier

   >   Proof sketch for Thm 1

   >   Simplifying a well-known PRG paradigm

>   what we’ll talk about



Bypassing the seed-length barrier
one technical observation to remember



Hardness-to-randomness
>   derandomization from PRGs

ℓ(n) T(n)G:

distinguisher

PRG



   >   replace T(n) coins with ℓ(n) coins, enumerate in time 2ℓ(n)

   >   textbook results [NW’94,IW’99,STV’01,SU’01,Uma’03]:

Hardness-to-randomness
>   derandomization from PRGs

DTIME[2n] ⊄ 
SIZE[s]

PRG with 
stretch ≈ s

BPP in 
DTIME 

≈ 2O(s^-1(n))



   >   Textbook approach: To derandomize time-T algs, 
construct a PRG that fools non-uniform size-T circuits

   >   Such a PRG requires a seed of length log(T)

   >   The derandomization time is 2log(T) ⋅ T(n) ≥ T(n)2

A formidable-looking barrier
>   why experts might think that c<2 requires “new techniques”



Tracking the non-uniformity
>   modeling distinguishers, carefully

T(n)

who is this distinguisher?



Tracking the non-uniformity
>   modeling distinguishers, carefully

   >   For any L ∈ BPTIME[T], our focus is:

      Does the probabilistic machine ML
behave the same on Gf(uℓ(n)) & uT(n) 
for all inputs x?

   >   Distinguisher is ML with an
arbitrary fixed input x

T(n)



Tracking the non-uniformity

   >   Textbook distinguisher:

Non-uniform circuit of size T

   >   Our pivotal observation:

Distinguisher is a time-T
machine with |x| = n ≪ T bits
of non-uniformity

>   modeling distinguishers, carefully

T(n)



Why is this helpful?

   >   non-uniformity is n ≪ T(n)
>   we want to fool TIME[T]/n rather than SIZE[T]

   >   ∃non-explicit PRG with seed length log(n) ≪ log(T) !

   >   opens the door to derandomization in time n ⋅ T(n)

>   we’ll make this PRG explicit, under assumptions

>   fooling small non-uniformity with small seed length



Proof sketch for Thm 1
main ideas & some parameters



Hardness-to-randomness
>   reconstructive PRGs

ℓ(n) T(n)Gf:

PRG based on 
hard function f



Hardness-to-randomness
>   reconstructive PRGs

ℓ(n) T(n)Gf:
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yields efficient 
procedure for f
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procedure for f

“reconstruction“ of f



Hardness-to-randomness
>   reconstructive PRGs

ℓ(n) T(n)Gf:

x

f(x)
distinguisher 

yields efficient 
procedure for f

f hard ⇒ no efficient distinguisher



Reconstruction overhead
>   and its discontents

   >   Reconstruction overhead is the main bottleneck

   >   Inefficient reconstruction 

⇒ inefficient procedure for f

⇒ stronger hardness hypothesis



Reconstruction overhead
>   and its discontents

   >   Best known overhead [Uma’03]:

distinguisher in time T ⇒ procedure for f in time TO(1)

   >   … so we need to assume f is hard for time TO(1)

   >   … since the PRG computes f ⇒ PRG takes time ≥ TO(1)

   >   Derandomization with large polynomial overhead



   >   Our goal is to avoid this overhead

   >   Two ideas in the proof: 

   1.   Compose “low-cost” PRGs

   2.   Use a tiny & super-exponentially-hard truth-table

Our PRG construction
>   high-level overview



   >   Our goal is to avoid this overhead

   >   Two ideas in the proof: 

   1.   Compose “low-cost” PRGs

   2.   Use a tiny & super-exponentially-hard truth-table

Our PRG construction
>   high-level overview

computable in time t1.01,
low-overhead 
    reconstruction



   >   Focus on T(n) = nc for simplicity

Composing two “low-cost” PRGs
>   each computable in time ≈ T1.01

1.01 ⋅ log(n) nε nc



   >   Focus on T(n) = nc for simplicity

Composing two “low-cost” PRGs
>   each computable in time ≈ T1.01

1.01 ⋅ log(n) nε nc

Nisan-Wigderson PRG crypto PRG



Composing two “low-cost” PRGs

   >   Small seed, but small output length

   >   Obs: Small output length ⇒ small reconst. overhead

>   the “inner” PRG

1.01 ⋅ log(n) nε 

Nisan-Wigderson PRG



Composing two “low-cost” PRGs

   >   Small seed, but small output length

   >   Obs: Small output length ⇒ small reconst. overhead

>   the “inner” PRG

1.01 ⋅ log(n) nε 

Nisan-Wigderson PRG
(including a code for 
hardness amplification)



Composing two “low-cost” PRGs
>   the “outer” PRG

   >   Large output length, but large seed

   >   Obs: OWF ⇒ crypto PRG ⇒ near-linear time PRG1

>   we’ll use it as a non-crypto PRG, i.e. distinguisher is weaker

ncnε 

1    take PRG nε ↦ 2nε computable in time nO(ε), and “compose” it ≈ nc times to extend output to nc

crypto PRG



Tiny, superexp-hard truth-table
>   a parametric overview

1.01 ⋅ 
log(n) nε 

NW

nc

crypto
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Tiny, superexp-hard truth-table
>   a parametric overview

1.01 ⋅ 
log(n) nε 

NW

nc

crypto

ML & x

   >    Our distinguisher uses

   1.   time nc

   2.   advice n



Tiny, superexp-hard truth-table
>   a parametric overview

1.01 ⋅ 
log(n) nε 

NW

nc

crypto

   >    We use f that is hard for 

   1.   time n1.01⋅c 

   2.   advice n+|f|0.99 
ML & x



Tiny, superexp-hard truth-table
>   a parametric overview

f

1.01 ⋅ 
log(n) nε 

NW

nc

crypto

   >    We use f that is hard for 

   1.   time n1.01⋅c 

   2.   advice n+|f|0.99 

n1+O(ε)

ML & x



Tiny, superexp-hard truth-table
>   a parametric overview

f

1.01 ⋅ 
log(n) nε 

NW

nc

crypto

   >    We use f that is hard for  

   1.   time n1.01⋅c ≈ 2c⋅ℓ 

   2.   advice n+|f|0.99≈ 20.99⋅ℓ

n1+O(ε) = 2ℓ 

ML & x



   >   Our derandomization uses a tiny truth-table with 
super-exponential time complexity

   >   Our hardness hypothesis (for k ≈ c)

f ∈ TIME[ 2k⋅ℓ ] and hard for TIME[ 2.99k⋅ℓ ]/2.99m

Hardness hypothesis
>   generalizing classical hardness hypotheses



A last small gap
>   final running-time of derandomization?

   >   we’ll have n1.01 seeds (for the inner PRG NW)

   >   naive approach: 

⇒   PRG computable on each seed in time ≈ T

⇒   derandomization in time O( n1.01⋅T )

   >   unfortunately this doesn’t work...



A last small gap
>   we didn’t really see that the PRG is linear-time computable yet

   >   our PRG is only computable per-seed in time ≈ n1.01 ⋅ T 
>   need to compute the entire truth-table, even for one seed

   >   … but it’s computable on all seeds in amortized time ≈ T
>   suffices for derandomization

   >   … this allows relaxing the hypothesis, only requiring that 
f will be computable on all inputs in amortized time ≈ T



   >   Assuming OWFs, tight equivalence of

   1.   hard functions with small amortized time-complexity

   2.   batch-computable PRGs

   >   The “right” objects to study in hardness-to-randomness

>   the tightness is significant for superfast derandomization

A last small gap
>   we didn’t really see that the PRG is linear-time computable yet



Reminder of more results

   >   Thm 2: Reduce overhead to n1.01⋅T for T(n) ≤ 2o(n)

   >   Prop 3: Assuming #NSETH, overhead of n.99⋅T is optimal

   >   Thm 4: Average-case derandomization with effectively
no overhead at all (only nε, below lower bound)

>   whose proof we won’t see today



Simplifying a well-known PRG paradigm
via quantified derandomization



   >   Well-studied paradigm for constructing PRGs

   >   Based on composition of two algorithms
>   pseudoentropy generator & extractor

   >   We will show: Any such composition can be viewed & 
analyzed in a very simple way

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]
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1.   a pseudoentropy generator (PEG)

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)G:

wow, this has 
high entropy!

T(n)



1.   a pseudoentropy generator (PEG)

2.   a randomness extractor

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)

Ext: T’(n)T(n)

+



1.   a pseudoentropy generator (PEG)

2.   a randomness extractor

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)

Ext: T’(n)T(n)

+

all the entropy “extracted” 
to almost-uniform string



Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]

   >   PRG: G(s1, s2) = Ext( PEG(s1), s2 )

   >   Intuition: If PEG(s1) looks entropic, then 
Ext( PEG(s1), s2 ) should look random

   >   Good extractors are known, so we “just” need a PEG, 
and to make the composition idea work



   >   Key problem: Idea hard to materialize
   >   Extractors known, focus on PEG & composition

   >   Approach 1: Construct good PEGs
(in which case composition works)

   >   Approach 2: Construct weak PEGs [DMOZ’20]
and try to salvage composition

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]



   >   Key problem: Idea hard to materialize
   >   Extractors known, focus on PEG & composition

   >   Approach 1: Construct good PEGs
(in which case composition works)

   >   Approach 2: Construct weak PEGs [DMOZ’20]
and try to salvage composition

Well-known PRG paradigm
>   underlies [HILL’99, BSW’03, …, DMOZ’20]

hard to do



   >   PRG:    G(s1, s2) = Ext( PEG(s1), s2 )

Easier & more general paradigm
>   error-reduction then quantified derandomization
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   >   We show a simple general analysis such that
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   >   … generator can be weaker than in [DMOZ’20]
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Easier & more general paradigm

   >   PRG:    G(s1, s2) = Ext( PEG(s1), s2 )

   >   We show a simple general analysis such that

   >   … composition is easy to prove

   >   … generator can be weaker than in [DMOZ’20]

   >   Meaning: New approach is easier & more general

>   error-reduction then quantified derandomization



   >   PRG:    G(s1, s2) = Ext( PEG(s1), s2 )

   >   New analysis has two steps:

   1.   (non-standard) error reduction, using Ext

   2.   quantified derandomization, using the inner generator
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   >   PRG:    G(s1, s2) = Ext( QD(s1), s2 )

   >   New analysis has two steps:
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>   error-reduction then quantified derandomization

metric (weak) PEGQD ≡



   >   PRG:    G(s1, s2) = Ext( QD(s1), s2 )

   >   New analysis has two steps:

   1.   (non-standard) error reduction, using Ext

   2.   quantified derandomization, using the inner generator

Easier & more general paradigm
>   error-reduction then quantified derandomization

metric (weak) PEGQD ≡
in [dmoz] we need
a metric peg for a 
non-standard class 
of distinguishers



Easier & more general paradigm

 >   Prop 5: 

Any construction that can be analyzed as 

“extract from a pseudoentropic string” 

can be analyzed (easily) as

“non-standard error-reduction and QD”

 >   (converse not known)

>   high-level recap



Derandomization with overhead c ∈ {2,3,4}
>   easy & versatile proof for superfast derandomization

   >   Cor 1: New simple proof for main result of [DMOZ’20]
>   use hypothesis to get a QD generator
>   combine QD & Ext in the simple way

   >   Cor 2: Proof extends to cubic/quartic derandomization 
from hardness only for NSIZE
>   (details in the paper)



4 Key takeaways
results to remember



Take-home message

   1.   Derandomization with overhead ≈ n ⋅ T(n) possible
   under natural assumptions

   2.   Simple & intuitive proofs yield conditional 
derandomization with overhead c ∈ { 1,2,3,4 } + ε 

   3.   Broadening the theoretical basis for 
superfast derandomization



Results from an upcoming work
>   under preparation, again joint with Lijie Chen

   >   Superfast derandomization in time n0.01 ⋅ T :

⇒ from fully uniform assumptions

⇒ wrt all polynomial-time-samplable distributions

   >   Under uniform assumptions, randomness is
“indistinguishable from useless” for decision 
problems and natural search problems



A sample of open questions
>   new area to explore

   1.   Is the overhead of n ⋅ T optimal?
>   evidence without #NSETH

   2.   Superfast derandomization from classical hypotheses?
>   no crypto, no hardness for MASIZE/NSIZE
>   boils down to the hybrid argument barrier

   3.   Search-to-decision with minimal overhead?
>   true given OWFs, show unconditional reduction



Thank you!

⇒ derandomization in near-linear time
⇒ simple & intuitive proofs, high-level insights

⇒ broadening theoretical basis for superfast derand


