Superfast Derandomization from Very Hard Functions

Lijie Chen and Roei Tell

Harvard CS Theory Seminar, March 2021

In this talk

- > the setting
 - l. Background
 - 2. Our results
 - 3. A taste of techniques

1 Background simple and fast derandomization

Randomness in computation

- > context
 - > We need randomness
 - > crypto, learning, sublinear-time algs...
 - > Conjecture: We don't need randomness to efficiently
 - 1. solve decision problems
 - 2. solve "verifiable" search problems

$\mathsf{BPP} \stackrel{\scriptscriptstyle 2}{=} \mathsf{P}$

historic recap

- > BPP formally defined in [Gill'77]
- > Immediately conjectured to "sort-of" equal P

We believe that for the unrelativized classes of Turing machines, only speedups for infinitely many inputs can be achieved by probabilistic machines.

$\mathsf{BPP} \stackrel{\scriptscriptstyle ?}{=} \mathsf{P}$

historic recap

> ... in fact, paper even raises stronger conjecture:

<u>Conjecture</u>: If f is a recursive function computed in time T* by some probabilistic Turing machine with error probability bounded away from 1/2, then there is a deterministic Turing machine which computes f in time $O(T^*(x))$ for infinitely many x.

- > more recent history
 - > Hard functions ⇒ efficient pseudorandomness
 [Yao,'82, BM'84]

⇒ derandomization of BPP

[NW'94, IW'99, STV'01, SU'01, Uma'03, and others]

> Conditioned on lower bounds, we have an answer

> more recent history

> more recent history

> more recent history

- > more recent history
 - > Smooth trade-off from [Uma'03] gives T $\approx 2^{O(S^{-1}(n))}$
 - > Extremal point established in [IW'99]:

```
TIME[ 2<sup>n</sup> ] ∉ ioSIZE[ 2<sup>.01n</sup> ]
```

```
\Rightarrow BPP = P
```

⇒ BPTIME[T] ⊆ TIME[$T^{O(1)}$]

- > ... snap back to now
 - > Doron, Moshkovitz, Oh, and Zuckerman (FOCS 2020) recently asked: Can we do it faster?

BPTIME[T] \subseteq TIME[T^c] for a small c?

- > Classical results can yield "reasonable" c when scaled-up
- > Diff between (say) c = 10 and c = 3 is substantial !

- > ... snap back to now
 - > What is the actual cost of simulating randomness?
 - > new area to explore
 - > theoretical basis not formed yet
 - > The obvious "end-goal" question:

Can we simulate randomness with no cost?

- > ... snap back to now
 - > Main result of [DMOZ'20]:

BPTIME[T] \subseteq TIME[T^{2.01}]

conditioned on

TIME[2ⁿ] ⊄ ioMASIZE[2^{.99n}]

> ... snap back to now

> Main result of [DMOZ'20]: BPTIME[T] ⊆ TIME[T^{2.01}]

conditioned on

TIME[2ⁿ] ⊄ ioMASIZE[2^{.99n}]

QUADIZATIC OVETZHEAD MIGHT BE POSSIBLE

- > ... snap back to now
 - > Main result of [DMOZ'20]:

BPTIME[T] \subseteq **TIME[T**^{2.01}]

conditioned on

TIME[2ⁿ] ⊄ ioMASIZE[2^{.99n}]

HYPOTHESIS SEEMS "TOO STIZONG"

> ... snap back to now

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	

- > ... snap back to now
 - > Takeaways:
 - 1. Superfast derand possible, under assumptions!
 - 2. Can we do better than quadratic overhead?
 - 3. We need stronger theoretical foundations
 - > hypothesis seems "too strong" & a bit non-standard

2 Our results simple and fast derandomization

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	
this work	(see next)		

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	
this work	(see next)	n · T ^{1.01}	

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	
this work	(see next)	n · T ^{1.01}	
		ո ^{1.01} · T	$T \le 2^{n \land o(1)}$

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	
this work	(see next)	n · T ^{1.01}	
		n ^{1.01} · T	$T \le 2^{n \land o(1)}$
		п ^{0.01} · Т	T = poly(n) on average

	hardness	derand. overhead	
[IW'99]	TIME[2 ⁿ] ⊄ ioSIZE[2 ^{.01n}]	T ^{O(1)}	
[DMOZ'20]	TIME[2 ⁿ] ⊄ ioMASIZE[2 ^{.99n}]	T ^{2.01}	
this work	one-way funcs &	n · T ^{1.01}	
non-uniformly strong time hierarchy	n ^{1.01} · T	$T \le 2^{n \land o(1)}$	
	n ^{0.01} · T	T = poly(n) on average	

> our first main result

> Classical hypotheses:

TIME[2^n] hard for ioSIZE[$2^{.01 \cdot n}$] [IW'99]

> our first main result

> Classical hypotheses:

TIME[2ⁿ] hard for ioSIZE[2^{.01·n}] [IW'99]

> our first main result

> Classical hypotheses:

TIME[2ⁿ] hard for ioSIZE[2^{.01·n}] [IW'99]

> our first main result

- Classical hypotheses:
 TIME[2ⁿ] hard for ioSIZE[2^{.01·n}] [IW'99]
- > Our hypotheses:

TIME[2^{kn}] hard for ioTIME[$2^{.99kn}$]/ $2^{.99n}$

> our first main result

Classical hypotheses:
 TIME[2ⁿ] hard for ioSIZE[2^{.01 · n}] [IW'99]

> Our hypotheses:

TIME[2^{kn}] hard for ioTIME[2.99kn]/2.99n NEATZ-MAXIMAL ADVICE

> our first main result

- Classical hypotheses:
 TIME[2ⁿ] hard for ioSIZE[2^{.01·n}] [IW'99]
- > Our hypotheses:

TIME[2^{kn}] hard for ioTIME[$2^{.99kn}$]/ $2^{.99n}$

> Natural scale-up of classical hypotheses

Near-linear time derandomization

> our first main result

> <u>Thm 1</u>: Assume non-uniformly secure OWFs. Then, $\forall \epsilon > 0 \exists \delta > 0 \text{ st } \forall T \exists k = k_T = O(1/\epsilon) \text{ for which}$ BPTIME[T] \subseteq TIME[$n \cdot T^{1+\epsilon}$]

conditioned on

TIME[2^{kn}] \notin ioTIME[$2^{(k-\delta) \cdot n}$] / $2^{(1-\delta) \cdot n}$

Additional properties of the result

- > understanding superfast derandomizatoin
 - > The hardness assumption is necessary (when using PRGs)
 - > ... hypothesis is optimal for "black-box" techs up to OWFs
 - > Proof of Thm 1 is intuitive and technically non-involved
 - > combining new insights with known technical tools

> zooming-in on the precise overhead

> <u>Thm 2</u>: Assume subexp-non-uniformly secure OWFs. Then, $\forall \epsilon > 0 \quad \exists \delta, k = O(1/\epsilon) \quad \text{st } \forall \text{ time } T \le 2^{o(n)}$

BPTIME[T] \subseteq TIME[n^{1+ ε} · T]

conditioned on

TIME[$2^{\delta \cdot n} \cdot T'$] \notin ioTIME[T']/ $2^{(1-\delta) \cdot n}$ where T'(n) = T($2^{(1-\delta) \cdot n}$) $\cdot 2^{O(\delta \cdot n)}$

> zooming-in on the precise overhead

> <u>Thm 2 (reminder):</u> Under assumptions...

BPTIME[T] \subseteq TIME[n^{1+ ε} · T]

> zooming-in on the precise overhead

> <u>Thm 2 (reminder):</u> Under assumptions...

BPTIME[T] \subseteq TIME[n^{1+ ε} · T]

DO WE HAVE TO PAY " × N"?

(TEXTBOOK BPP ⊆ P/POLY HAS THIS OVETZHEAD)

- > zooming-in on the precise overhead
 - > <u>Thm 2 (reminder)</u>: Under assumptions... **BPTIME[T] \subseteq TIME[n^{1+\varepsilon} · T]**
 - Prop 3: Conditioned on #NSETH, ∀ε>0

BPTIME[T] \notin **TIME[** $n^{1-\epsilon} \cdot T$ **]** (\forall T = poly)

> <u>#NSETH:</u> We can't count solutions of a given k-SAT formula in NTIME[$2^{(1-\epsilon) \cdot n}$] (assuming suff. large k=k_{ϵ})
Average-case derandomization

- > bypassing this barrier
 - > <u>Thm 4:</u> Assume non-uniformly secure OWFs. Then, $\forall \epsilon > 0 \quad \exists \delta, k = O(1/\epsilon) \quad \text{st } \forall \text{ time } T(n) = poly(n)$ **BPTIME[T] \subseteq TIME[n^{\epsilon} \cdot T] on average**

conditioned on

TIME[$2^{\delta \cdot n} \cdot T'$ **]** \notin io**TIME[**T'**]** $/ 2^{(1-\delta) \cdot n}$ where T'(n) $\approx T(2^{(1-\delta) \cdot O(1/\epsilon) \cdot n}) \cdot 2^{O(\delta \cdot n)}$

Average-case derandomization

- > bypassing this barrier
 - > <u>Thm 4:</u> Under assumptions ...

BPTIME[T] \subseteq **TIME[** n^{ϵ} · **T**] on average

- > ... with respect to all T-time samplable distributions
- > ... with success probability 1-n^{- ω (1)}
 - > L ∈ BPTIME[T] \Rightarrow one alg A₁ "looks correct" to all T-time dist.

Extra goodies in the paper

> technical insights & results intertwined in our proofs

- 1. Easy way to bypass a formidable-looking barrier
- 2. Simplify & extend [DMOZ'20]: Derandomization with overhead $c \in \{1,2,3,4\} + \epsilon$ from corresponding assump.
- 3. General simplification of a well-known PRG paradigm
 - "extract-from-pseudoentropic string" as a special case of an easy-to-analyze strategy
 - > new light on avoiding the hybrid argument
- 4. Batch-computable PRGs vs amortized time-complexity

Meaning of our results

- > zooming out
 - > Takeaways:
 - 1. Derandomization with near-linear overhead is possible, under natural assumptions
 - 2. Hypotheses are different than in [DMOZ'20] and support trade-offs with conclusion
 - 3. Broadening the emerging theoretical basis for superfast derandomization

Near-linear time derandomization

- > in a world of BPTIME[T] ≈ TIME[T]
 - > Randomness might be nearly useless
 - > time overhead is minor
 - > derandomization is simple & solves search problems
 - > Derandomize "better-than-brute-force" algorithms
 - > Lower bds for DTIME \Rightarrow lower bds for BPTIME
 - > SETH ⇒ rSETH (assuming Thm 1 for arbitrarily small savings)

3 A taste of techniques observations & proof sketches

Technical roadmap

- > what we'll talk about
 - > Bypassing the seed-length barrier
 - > Proof sketch for Thm 1
 - > Simplifying a well-known PRG paradigm

Bypassing the seed-length barrier one technical observation to remember

> derandomization from PRGs

- > derandomization from PRGs
 - > replace T(n) coins with $\ell(n)$ coins, enumerate in time $2^{\ell(n)}$
 - > textbook results [NW'94,IW'99,STV'01,SU'01,Uma'03]:

A formidable-looking barrier

> why experts might think that c<2 requires "new techniques"</p>

- Textbook approach: To derandomize time-T algs, construct a PRG that fools non-uniform size-T circuits
- > Such a PRG requires a seed of length log(T)
- > The derandomization time is $2^{\log(T)} \cdot T(n) \ge T(n)^2$

Tracking the non-uniformity

> modeling distinguishers, carefully

who is this distinguisher?

T(n)

Tracking the non-uniformity

- > modeling distinguishers, carefully
 - > For any $L \in BPTIME[T]$, our focus is:

Does the probabilistic machine M_L behave the same on **G^f(u_{ℓ(n)})** & **u_{T(n)}** for all inputs x?

 Distinguisher is M_L with an arbitrary fixed input x

T(n)

Tracking the non-uniformity

- modeling distinguishers, carefully
 - Textbook distinguisher:
 Non-uniform circuit of size T
 - > Our pivotal observation:

Distinguisher is a time-T machine with $|x| = n \ll T$ bits of non-uniformity

T(n)

Why is this helpful?

> fooling small non-uniformity with small seed length

- > non-uniformity is $n \ll T(n)$
 - > we want to fool TIME[T]/n rather than SIZE[T]
- > \exists non-explicit PRG with seed length log(n) \ll log(T) !
- > opens the door to derandomization in time n + T(n)
 - > we'll make this PRG explicit, under assumptions

Proof sketch for Thm 1

main ideas & some parameters

> reconstructive PRGs

> reconstructive PRGs

2

Σ

> reconstructive PRGs

F HATED => NO EFFICIENT DISTINGUISHETZ

Reconstruction overhead

- > and its discontents
 - > Reconstruction overhead is the main bottleneck
 - > Inefficient reconstruction
 - \Rightarrow inefficient procedure for f
 - ⇒ stronger hardness hypothesis

Reconstruction overhead

- > and its discontents
 - > Best known overhead [Uma'03]:
 distinguisher in time T ⇒ procedure for f in time T^{O(1)}
 - > ... so we need to assume f is hard for time $T^{O(1)}$
 - > ... since the PRG computes f \Rightarrow PRG takes time \ge T^{O(1)}
 - > Derandomization with large polynomial overhead

Our PRG construction

- > high-level overview
 - > Our goal is to avoid this overhead
 - > Two ideas in the proof:
 - l. Compose "low-cost" PRGs
 - 2. Use a tiny & super-exponentially-hard truth-table

Our PRG construction

- > high-level overview
 - > Our goal is to avoid this overhead
 - > Two ideas in the proof:
 - l. Compose "low-cost" PRGs

COMPUTABLE IN TIME TIDI, LOW-OVETZHEAD TZECONSTITUCTION

2. Use a tiny & super-exponentially-hard truth-table

- > each computable in time $\approx T^{1.01}$
 - > Focus on T(n) = n^c for simplicity

> each computable in time $\approx T^{1.01}$

```
> Focus on T(n) = n<sup>c</sup> for simplicity
```


> the "inner" PRG

- > Small seed, but small output length
- › <u>Obs:</u> Small output length ⇒ small reconst. overhead

> the "inner" PRG

- > Small seed, but small output length
- › <u>Obs:</u> Small output length ⇒ small reconst. overhead

> the "outer" PRG

- > Large output length, but large seed
- > <u>Obs:</u> OWF \Rightarrow crypto PRG \Rightarrow near-linear time PRG¹

> we'll use it as a non-crypto PRG, i.e. distinguisher is weaker

1 take PRG $n^{\epsilon} \mapsto 2n^{\epsilon}$ computable in time $n^{O(\epsilon)}$, and "compose" it $\approx n^{c}$ times to extend output to n^{c}

Hardness hypothesis

- > generalizing classical hardness hypotheses
 - Our derandomization uses a tiny truth-table with super-exponential time complexity
 - > Our hardness hypothesis (for $k \approx c$)

 $f \in TIME[2^{k \cdot \ell}]$ and hard for $TIME[2^{.99k \cdot \ell}]/2^{.99m}$
A last small gap

> final running-time of derandomization?

- > we'll have n^{1.01} seeds (for the inner PRG NW)
- > naive approach:
 - \Rightarrow PRG computable on each seed in time \approx T
 - \Rightarrow derandomization in time O(n^{1.01}.T)
- > unfortunately this doesn't work...

A last small gap

> we didn't *really* see that the PRG is linear-time computable yet

- > our PRG is only computable per-seed in time ≈ n^{1.01}. T
 > need to compute the entire truth-table, even for one seed
- > ... but it's computable on all seeds in amortized time ≈ T
 > suffices for derandomization
- ... this allows relaxing the hypothesis, only requiring that f will be computable on all inputs in amortized time ≈ T

A last small gap

> we didn't *really* see that the PRG is linear-time computable yet

- > Assuming OWFs, tight equivalence of
 - 1. hard functions with small amortized time-complexity
 - 2. batch-computable PRGs
- > The "right" objects to study in hardness-to-randomness
 - > the tightness is significant for superfast derandomization

Reminder of more results

- > whose proof we won't see today
 - > <u>Thm 2</u>: Reduce overhead to $n^{1.01}$. T for T(n) $\leq 2^{o(n)}$
 - > <u>Prop 3:</u> Assuming #NSETH, overhead of n^{.99}. T is optimal
 - <u>Thm 4:</u> Average-case derandomization with effectively no overhead at all (only n^ε, below lower bound)

Simplifying a well-known PRG paradigm via quantified derandomization

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - > Well-studied paradigm for constructing PRGs
 - > Based on composition of two algorithms
 > pseudoentropy generator & extractor
 - We will show: Any such composition can be viewed & analyzed in a very simple way

> underlies [HILL'99, BSW'03, ..., DMOZ'20]

l. a pseudoentropy generator (PEG)

> underlies [HILL'99, BSW'03, ..., DMOZ'20]

l. a pseudoentropy generator (PEG)

> underlies [HILL'99, BSW'03, ..., DMOZ'20]

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - l. a pseudoentropy generator (PEG)
 - 2. a randomness extractor

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - l. a pseudoentropy generator (PEG)
 - 2. a randomness extractor

all the entropy "extracted" to almost-uniform string

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - > PRG: $G(s_1, s_2) = Ext(PEG(s_1), s_2)$
 - > Intuition: If $PEG(s_1)$ looks entropic, then Ext($PEG(s_1), s_2$) should look random
 - Good extractors are known, so we "just" need a PEG, and to make the composition idea work

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - > Key problem: Idea hard to materialize
 - > Extractors known, focus on PEG & composition
 - Approach 1: Construct good PEGs
 (in which case composition works)
 - Approach 2: Construct weak PEGs [DMOZ'20] and try to salvage composition

- > underlies [HILL'99, BSW'03, ..., DMOZ'20]
 - > Key problem: Idea hard to materialize
 - > Extractors known, focus on PEG & composition
 - Approach 1: Construct good PEGs
 (in which case composition works)
 - Approach 2: Construct weak PEGs [DMOZ'20]
 and try to salvage composition

HATED TO DO

> error-reduction then quantified derandomization

> PRG: G(s₁, s₂) = Ext(PEG(s₁), s₂)

> error-reduction then quantified derandomization

- > PRG: G(s₁, s₂) = Ext(PEG(s₁), s₂)
- > We show a simple general analysis such that
 - > ... composition is easy to prove
 - > ... generator can be weaker than in [DMOZ'20]

> error-reduction then quantified derandomization

- > PRG: G(s₁, s₂) = Ext(PEG(s₁), s₂)
- > We show a simple general analysis such that
 - > ... composition is easy to prove
 - > ... generator can be weaker than in [DMOZ'20]
- > Meaning: New approach is easier & more general

> error-reduction then quantified derandomization

- > PRG: G(s₁, s₂) = Ext(PEG(s₁), s₂)
- > New analysis has two steps:
 - l. (non-standard) error reduction, using Ext
 - 2. quantified derandomization, using the inner generator

> error-reduction then quantified derandomization

- > PRG: G(s₁, s₂) = Ext(QD(s₁), s₂)
- > New analysis has two steps:
 - l. (non-standard) error reduction, using Ext
 - 2. quantified derandomization, using the inner generator

Ξ

metric (weak) PEG

> error-reduction then quantified derandomization

- > PRG: G(s₁, s₂) = Ext(QD(s₁), s₂)
- > New analysis has two steps:
 - l. (non-standard) error reduction, using Ext
 - 2. quantified derandomization, using the inner generator

- IN [DMOZ] WE NEED A METTZIC PEGFFOTZA NON-STANDATZD CLASS OF DISTINGUISHETZS

high-level recap

› <u>Prop 5:</u>

Any construction that can be analyzed as "extract from a pseudoentropic string" can be analyzed (easily) as "non-standard error-reduction and QD"

> (converse not known)

Derandomization with overhead $c \in \{2,3,4\}$

- > easy & versatile proof for superfast derandomization
 - Cor 1: New simple proof for main result of [DMOZ'20]
 use hypothesis to get a QD generator
 combine QD & Ext in the simple way
 - <u>Cor 2</u>: Proof extends to cubic/quartic derandomization from hardness only for NSIZE
 - > (details in the paper)

4 Key takeaways results to remember

Take-home message

- 1. Derandomization with overhead \approx n \cdot T(n) possible under natural assumptions
- 2. Simple & intuitive proofs yield conditional derandomization with overhead $c \in \{1,2,3,4\} + \epsilon$
- 3. Broadening the theoretical basis for superfast derandomization

Results from an upcoming work

- > under preparation, again joint with Lijie Chen
 - > Superfast derandomization in time $n^{0.01}$ · T :
 - ⇒ from fully uniform assumptions
 - ⇒ wrt all polynomial-time-samplable distributions
 - Under uniform assumptions, randomness is "indistinguishable from useless" for decision problems and natural search problems

A sample of open questions

- > new area to explore
 - l. Is the overhead of n $\,\cdot\,$ T optimal?
 - > evidence without #NSETH
 - 2. Superfast derandomization from classical hypotheses?
 - > no crypto, no hardness for MASIZE/NSIZE
 - > boils down to the hybrid argument barrier
 - 3. Search-to-decision with minimal overhead?
 - > true given OWFs, show unconditional reduction

Thank you!

⇒ derandomization in near-linear time
 ⇒ simple & intuitive proofs, high-level insights
 ⇒ broadening theoretical basis for superfast derand