
Superfast Derandomization from
Very Hard Functions
Lijie Chen and Roei Tell
Harvard CS Theory Seminar, March 2021

In this talk

 1. Background

 2. Our results

 3. A taste of techniques

> the setting

1 Background
simple and fast derandomization

 > We need randomness

 > crypto, learning, sublinear-time algs...

 > Conjecture: We don’t need randomness to efficiently

 1. solve decision problems

 2. solve “verifiable” search problems

Randomness in computation
> context

 > BPP formally defined in [Gill’77]

 > Immediately conjectured to “sort-of” equal P

BPP ≟ P
> historic recap

 > … in fact, paper even raises stronger conjecture:

BPP ≟ P
> historic recap

 > Hard functions ⇒ efficient pseudorandomness
[Yao,’82, BM’84]

 ⇒ derandomization of BPP

[NW’94, IW’99, STV’01, SU’01, Uma’03, and others]

 > Conditioned on lower bounds, we have an answer

Hardness-to-randomness
> more recent history

Hardness-to-randomness
> more recent history

S

T

poly(n)

poly(n)

2n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPP ⊆ TIME[T]

Hardness-to-randomness
> more recent history

S

T

poly(n)

poly(n)

2n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPP ⊆ TIME[T]low-end

Hardness-to-randomness
> more recent history

S

T

poly(n)

poly(n)

2n

2ε⋅n

TIME[2n] ⊄ SIZE[S]
⇒

BPP ⊆ TIME[T]

high-end

 > Smooth trade-off from [Uma’03] gives T ≈ 2O(S^-1(n))

 > Extremal point established in [IW’99]:

TIME[2n] ⊄ ioSIZE[2.01n]

⇒ BPP = P

⇒ BPTIME[T] ⊆ TIME[TO(1)]

Hardness-to-randomness
> more recent history

 > Doron, Moshkovitz, Oh, and Zuckerman (FOCS 2020)
recently asked: Can we do it faster?

BPTIME[T] ⊆ TIME[Tc] for a small c?

 > Classical results can yield “reasonable” c when scaled-up

 > Diff between (say) c = 10 and c = 3 is substantial !

Superfast derandomization
> … snap back to now

 > What is the actual cost of simulating randomness?
> new area to explore
> theoretical basis not formed yet

 > The obvious “end-goal” question:

Can we simulate randomness with no cost?

Superfast derandomization
> … snap back to now

 > Main result of [DMOZ’20]:

BPTIME[T] ⊆ TIME[T2.01]

 conditioned on

TIME[2n] ⊄ ioMASIZE[2.99n]

Superfast derandomization
> … snap back to now

 > Main result of [DMOZ’20]:

BPTIME[T] ⊆ TIME[T2.01]

 conditioned on

TIME[2n] ⊄ ioMASIZE[2.99n]

Superfast derandomization
> … snap back to now

quadratic overhead
might be possible

 > Main result of [DMOZ’20]:

BPTIME[T] ⊆ TIME[T2.01]

 conditioned on

TIME[2n] ⊄ ioMASIZE[2.99n]

Superfast derandomization
> … snap back to now

hypothesis seems
“too strong”

Superfast derandomization
> … snap back to now

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

Superfast derandomization
> … snap back to now

 > Takeaways:

1. Superfast derand possible, under assumptions!

2. Can we do better than quadratic overhead?

3. We need stronger theoretical foundations

> hypothesis seems “too strong” & a bit non-standard

2 Our results
simple and fast derandomization

Preliminary peek at our results

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

this work (see next)

Preliminary peek at our results

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

this work (see next) n ⋅ T1.01

Preliminary peek at our results

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

this work (see next) n ⋅ T1.01

n1.01 ⋅ T T ≤ 2n^o(1)

Preliminary peek at our results

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

this work (see next) n ⋅ T1.01

n1.01 ⋅ T T ≤ 2n^o(1)

n0.01 ⋅ T T = poly(n)
on average

Preliminary peek at our results

hardness derand. overhead

[IW’99] TIME[2n] ⊄
ioSIZE[2.01n]

TO(1)

[DMOZ’20] TIME[2n] ⊄
ioMASIZE[2.99n]

T2.01

this work one-way funcs &
non-uniformly

strong time
hierarchy

n ⋅ T1.01

n1.01 ⋅ T T ≤ 2n^o(1)

n0.01 ⋅ T T = poly(n)
on average

Non-uniformly-strong time hierarchy

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

> our first main result

Non-uniformly-strong time hierarchy
> our first main result

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

non-uniformity isn’t enough
to speed up all algorithms

Non-uniformly-strong time hierarchy
> our first main result

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

(no “magic speedup advice”
tailored to input length)

Non-uniformly-strong time hierarchy
> our first main result

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

 > Our hypotheses:

TIME[2kn] hard for ioTIME[2.99kn] / 2.99n

Non-uniformly-strong time hierarchy
> our first main result

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

 > Our hypotheses:

TIME[2kn] hard for ioTIME[2.99kn] / 2.99n

large time
near-maximal advice

Non-uniformly-strong time hierarchy
> our first main result

 > Classical hypotheses:

TIME[2n] hard for ioSIZE[2.01⋅n] [IW’99]

 > Our hypotheses:

TIME[2kn] hard for ioTIME[2.99kn] / 2.99n

 > Natural scale-up of classical hypotheses

Near-linear time derandomization
> our first main result

 > Thm 1: Assume non-uniformly secure OWFs. Then,

∀ε>0 ∃δ>0 st ∀T ∃k=kT=O(1/ε) for which

BPTIME[T] ⊆ TIME[n ⋅ T1+ε]

 conditioned on

TIME[2kn] ⊄ ioTIME[2(k-δ)⋅n] / 2(1-δ)⋅n

Additional properties of the result
> understanding superfast derandomizatoin

 > The hardness assumption is necessary (when using PRGs)

> … hypothesis is optimal for “black-box” techs up to OWFs

 > Proof of Thm 1 is intuitive and technically non-involved

> combining new insights with known technical tools

Complementing the first result

 > Thm 2: Assume subexp-non-uniformly secure OWFs. Then,

∀ε>0 ∃δ, k=O(1/ε) st ∀ time T ≤ 2o(n)

BPTIME[T] ⊆ TIME[n1+ε ⋅ T]

 conditioned on

TIME[2δ⋅n ⋅ T’] ⊄ ioTIME[T’]/2(1-δ)⋅n

where T’(n) = T(2(1-δ)⋅n)⋅2O(δ⋅n)

> zooming-in on the precise overhead

 > Thm 2 (reminder): Under assumptions...

BPTIME[T] ⊆ TIME[n1+ε ⋅ T]

Complementing the first result
> zooming-in on the precise overhead

 > Thm 2 (reminder): Under assumptions...

BPTIME[T] ⊆ TIME[n1+ε ⋅ T]

Complementing the first result
> zooming-in on the precise overhead

do we have to pay “ × n”?

(textbook bpp ⊆ p/poly
has this overhead)

 > Thm 2 (reminder): Under assumptions...

BPTIME[T] ⊆ TIME[n1+ε ⋅ T]

 > Prop 3: Conditioned on #NSETH, ∀ε>0

BPTIME[T] ⊄ TIME[n1-ε ⋅ T] (∀ T = poly)

 > #NSETH: We can’t count solutions of a given k-SAT
formula in NTIME[2(1-ε)⋅n] (assuming suff. large k=k ε)

Complementing the first result
> zooming-in on the precise overhead

 > Thm 4: Assume non-uniformly secure OWFs. Then,

∀ε>0 ∃δ, k=O(1/ε) st ∀ time T(n)=poly(n)

BPTIME[T] ⊆ TIME[nε ⋅ T] on average

 conditioned on

TIME[2δ⋅n ⋅ T’] ⊄ ioTIME[T’] / 2(1-δ)⋅n

where T’(n) ≈ T(2(1-δ)⋅O(1/ε)⋅n)⋅2O(δ⋅n)

Average-case derandomization
> bypassing this barrier

 > Thm 4: Under assumptions ...

BPTIME[T] ⊆ TIME[nε ⋅ T] on average

 > … with respect to all T-time samplable distributions

 > … with success probability 1-n-ω(1)

> L ∈ BPTIME[T] ⇒ one alg AL “looks correct” to all T-time dist.

Average-case derandomization
> bypassing this barrier

Extra goodies in the paper
> technical insights & results intertwined in our proofs

 1. Easy way to bypass a formidable-looking barrier

 2. Simplify & extend [DMOZ’20]: Derandomization with
overhead c ∈ {1,2,3,4} + ε from corresponding assump.

 3. General simplification of a well-known PRG paradigm
> ”extract-from-pseudoentropic string” as a
 special case of an easy-to-analyze strategy
> new light on avoiding the hybrid argument

 4. Batch-computable PRGs vs amortized time-complexity

 > Takeaways:

1. Derandomization with near-linear overhead
is possible, under natural assumptions

2. Hypotheses are different than in [DMOZ’20] and
support trade-offs with conclusion

3. Broadening the emerging theoretical basis for
superfast derandomization

Meaning of our results
> zooming out

Near-linear time derandomization

 > Randomness might be nearly useless
> time overhead is minor
> derandomization is simple & solves search problems

 > Derandomize “better-than-brute-force” algorithms

 > Lower bds for DTIME ⇒ lower bds for BPTIME
> SETH ⇒ rSETH (assuming Thm 1 for arbitrarily small savings)

> in a world of BPTIME[T] ≈ TIME[T]

3 A taste of techniques
observations & proof sketches

Technical roadmap

 > Bypassing the seed-length barrier

 > Proof sketch for Thm 1

 > Simplifying a well-known PRG paradigm

> what we’ll talk about

Bypassing the seed-length barrier
one technical observation to remember

Hardness-to-randomness
> derandomization from PRGs

ℓ(n) T(n)G:

distinguisher

PRG

 > replace T(n) coins with ℓ(n) coins, enumerate in time 2ℓ(n)

 > textbook results [NW’94,IW’99,STV’01,SU’01,Uma’03]:

Hardness-to-randomness
> derandomization from PRGs

DTIME[2n] ⊄
SIZE[s]

PRG with
stretch ≈ s

BPP in
DTIME

≈ 2O(s^-1(n))

 > Textbook approach: To derandomize time-T algs,
construct a PRG that fools non-uniform size-T circuits

 > Such a PRG requires a seed of length log(T)

 > The derandomization time is 2log(T) ⋅ T(n) ≥ T(n)2

A formidable-looking barrier
> why experts might think that c<2 requires “new techniques”

Tracking the non-uniformity
> modeling distinguishers, carefully

T(n)

who is this distinguisher?

Tracking the non-uniformity
> modeling distinguishers, carefully

 > For any L ∈ BPTIME[T], our focus is:

 Does the probabilistic machine ML
behave the same on Gf(uℓ(n)) & uT(n)
for all inputs x?

 > Distinguisher is ML with an
arbitrary fixed input x

T(n)

Tracking the non-uniformity

 > Textbook distinguisher:

Non-uniform circuit of size T

 > Our pivotal observation:

Distinguisher is a time-T
machine with |x| = n ≪ T bits
of non-uniformity

> modeling distinguishers, carefully

T(n)

Why is this helpful?

 > non-uniformity is n ≪ T(n)
> we want to fool TIME[T]/n rather than SIZE[T]

 > ∃non-explicit PRG with seed length log(n) ≪ log(T) !

 > opens the door to derandomization in time n ⋅ T(n)

> we’ll make this PRG explicit, under assumptions

> fooling small non-uniformity with small seed length

Proof sketch for Thm 1
main ideas & some parameters

Hardness-to-randomness
> reconstructive PRGs

ℓ(n) T(n)Gf:

PRG based on
hard function f

Hardness-to-randomness
> reconstructive PRGs

ℓ(n) T(n)Gf:

x

f(x)
distinguisher

yields efficient
procedure for f

Hardness-to-randomness
> reconstructive PRGs

ℓ(n) T(n)Gf:

x

f(x)
distinguisher

yields efficient
procedure for f

“reconstruction“ of f

Hardness-to-randomness
> reconstructive PRGs

ℓ(n) T(n)Gf:

x

f(x)
distinguisher

yields efficient
procedure for f

f hard ⇒ no efficient distinguisher

Reconstruction overhead
> and its discontents

 > Reconstruction overhead is the main bottleneck

 > Inefficient reconstruction

⇒ inefficient procedure for f

⇒ stronger hardness hypothesis

Reconstruction overhead
> and its discontents

 > Best known overhead [Uma’03]:

distinguisher in time T ⇒ procedure for f in time TO(1)

 > … so we need to assume f is hard for time TO(1)

 > … since the PRG computes f ⇒ PRG takes time ≥ TO(1)

 > Derandomization with large polynomial overhead

 > Our goal is to avoid this overhead

 > Two ideas in the proof:

 1. Compose “low-cost” PRGs

 2. Use a tiny & super-exponentially-hard truth-table

Our PRG construction
> high-level overview

 > Our goal is to avoid this overhead

 > Two ideas in the proof:

 1. Compose “low-cost” PRGs

 2. Use a tiny & super-exponentially-hard truth-table

Our PRG construction
> high-level overview

computable in time t1.01,
low-overhead
 reconstruction

 > Focus on T(n) = nc for simplicity

Composing two “low-cost” PRGs
> each computable in time ≈ T1.01

1.01 ⋅ log(n) nε nc

 > Focus on T(n) = nc for simplicity

Composing two “low-cost” PRGs
> each computable in time ≈ T1.01

1.01 ⋅ log(n) nε nc

Nisan-Wigderson PRG crypto PRG

Composing two “low-cost” PRGs

 > Small seed, but small output length

 > Obs: Small output length ⇒ small reconst. overhead

> the “inner” PRG

1.01 ⋅ log(n) nε

Nisan-Wigderson PRG

Composing two “low-cost” PRGs

 > Small seed, but small output length

 > Obs: Small output length ⇒ small reconst. overhead

> the “inner” PRG

1.01 ⋅ log(n) nε

Nisan-Wigderson PRG
(including a code for
hardness amplification)

Composing two “low-cost” PRGs
> the “outer” PRG

 > Large output length, but large seed

 > Obs: OWF ⇒ crypto PRG ⇒ near-linear time PRG1

> we’ll use it as a non-crypto PRG, i.e. distinguisher is weaker

ncnε

1 take PRG nε ↦ 2nε computable in time nO(ε), and “compose” it ≈ nc times to extend output to nc

crypto PRG

Tiny, superexp-hard truth-table
> a parametric overview

1.01 ⋅
log(n) nε

NW

nc

crypto

Tiny, superexp-hard truth-table
> a parametric overview

1.01 ⋅
log(n) nε

NW

nc

crypto

ML & x

Tiny, superexp-hard truth-table
> a parametric overview

1.01 ⋅
log(n) nε

NW

nc

crypto

ML & x

 > Our distinguisher uses

 1. time nc

 2. advice n

Tiny, superexp-hard truth-table
> a parametric overview

1.01 ⋅
log(n) nε

NW

nc

crypto

 > We use f that is hard for

 1. time n1.01⋅c

 2. advice n+|f|0.99
ML & x

Tiny, superexp-hard truth-table
> a parametric overview

f

1.01 ⋅
log(n) nε

NW

nc

crypto

 > We use f that is hard for

 1. time n1.01⋅c

 2. advice n+|f|0.99

n1+O(ε)

ML & x

Tiny, superexp-hard truth-table
> a parametric overview

f

1.01 ⋅
log(n) nε

NW

nc

crypto

 > We use f that is hard for

 1. time n1.01⋅c ≈ 2c⋅ℓ

 2. advice n+|f|0.99≈ 20.99⋅ℓ

n1+O(ε) = 2ℓ

ML & x

 > Our derandomization uses a tiny truth-table with
super-exponential time complexity

 > Our hardness hypothesis (for k ≈ c)

f ∈ TIME[2k⋅ℓ] and hard for TIME[2.99k⋅ℓ]/2.99m

Hardness hypothesis
> generalizing classical hardness hypotheses

A last small gap
> final running-time of derandomization?

 > we’ll have n1.01 seeds (for the inner PRG NW)

 > naive approach:

⇒ PRG computable on each seed in time ≈ T

⇒ derandomization in time O(n1.01⋅T)

 > unfortunately this doesn’t work...

A last small gap
> we didn’t really see that the PRG is linear-time computable yet

 > our PRG is only computable per-seed in time ≈ n1.01 ⋅ T
> need to compute the entire truth-table, even for one seed

 > … but it’s computable on all seeds in amortized time ≈ T
> suffices for derandomization

 > … this allows relaxing the hypothesis, only requiring that
f will be computable on all inputs in amortized time ≈ T

 > Assuming OWFs, tight equivalence of

 1. hard functions with small amortized time-complexity

 2. batch-computable PRGs

 > The “right” objects to study in hardness-to-randomness

> the tightness is significant for superfast derandomization

A last small gap
> we didn’t really see that the PRG is linear-time computable yet

Reminder of more results

 > Thm 2: Reduce overhead to n1.01⋅T for T(n) ≤ 2o(n)

 > Prop 3: Assuming #NSETH, overhead of n.99⋅T is optimal

 > Thm 4: Average-case derandomization with effectively
no overhead at all (only nε, below lower bound)

> whose proof we won’t see today

Simplifying a well-known PRG paradigm
via quantified derandomization

 > Well-studied paradigm for constructing PRGs

 > Based on composition of two algorithms
> pseudoentropy generator & extractor

 > We will show: Any such composition can be viewed &
analyzed in a very simple way

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

1. a pseudoentropy generator (PEG)

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

1. a pseudoentropy generator (PEG)

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n) T(n)G:

1. a pseudoentropy generator (PEG)

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)G:

wow, this has
high entropy!

T(n)

1. a pseudoentropy generator (PEG)

2. a randomness extractor

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)

Ext: T’(n)T(n)

+

1. a pseudoentropy generator (PEG)

2. a randomness extractor

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

ℓ(n)

Ext: T’(n)T(n)

+

all the entropy “extracted”
to almost-uniform string

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

 > PRG: G(s1, s2) = Ext(PEG(s1), s2)

 > Intuition: If PEG(s1) looks entropic, then
Ext(PEG(s1), s2) should look random

 > Good extractors are known, so we “just” need a PEG,
and to make the composition idea work

 > Key problem: Idea hard to materialize
 > Extractors known, focus on PEG & composition

 > Approach 1: Construct good PEGs
(in which case composition works)

 > Approach 2: Construct weak PEGs [DMOZ’20]
and try to salvage composition

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

 > Key problem: Idea hard to materialize
 > Extractors known, focus on PEG & composition

 > Approach 1: Construct good PEGs
(in which case composition works)

 > Approach 2: Construct weak PEGs [DMOZ’20]
and try to salvage composition

Well-known PRG paradigm
> underlies [HILL’99, BSW’03, …, DMOZ’20]

hard to do

 > PRG: G(s1, s2) = Ext(PEG(s1), s2)

Easier & more general paradigm
> error-reduction then quantified derandomization

Easier & more general paradigm

 > PRG: G(s1, s2) = Ext(PEG(s1), s2)

 > We show a simple general analysis such that

 > … composition is easy to prove

 > … generator can be weaker than in [DMOZ’20]

> error-reduction then quantified derandomization

Easier & more general paradigm

 > PRG: G(s1, s2) = Ext(PEG(s1), s2)

 > We show a simple general analysis such that

 > … composition is easy to prove

 > … generator can be weaker than in [DMOZ’20]

 > Meaning: New approach is easier & more general

> error-reduction then quantified derandomization

 > PRG: G(s1, s2) = Ext(PEG(s1), s2)

 > New analysis has two steps:

 1. (non-standard) error reduction, using Ext

 2. quantified derandomization, using the inner generator

Easier & more general paradigm
> error-reduction then quantified derandomization

 > PRG: G(s1, s2) = Ext(QD(s1), s2)

 > New analysis has two steps:

 1. (non-standard) error reduction, using Ext

 2. quantified derandomization, using the inner generator

Easier & more general paradigm
> error-reduction then quantified derandomization

metric (weak) PEGQD ≡

 > PRG: G(s1, s2) = Ext(QD(s1), s2)

 > New analysis has two steps:

 1. (non-standard) error reduction, using Ext

 2. quantified derandomization, using the inner generator

Easier & more general paradigm
> error-reduction then quantified derandomization

metric (weak) PEGQD ≡
in [dmoz] we need
a metric peg for a
non-standard class
of distinguishers

Easier & more general paradigm

 > Prop 5:

Any construction that can be analyzed as

“extract from a pseudoentropic string”

can be analyzed (easily) as

“non-standard error-reduction and QD”

 > (converse not known)

> high-level recap

Derandomization with overhead c ∈ {2,3,4}
> easy & versatile proof for superfast derandomization

 > Cor 1: New simple proof for main result of [DMOZ’20]
> use hypothesis to get a QD generator
> combine QD & Ext in the simple way

 > Cor 2: Proof extends to cubic/quartic derandomization
from hardness only for NSIZE
> (details in the paper)

4 Key takeaways
results to remember

Take-home message

 1. Derandomization with overhead ≈ n ⋅ T(n) possible
 under natural assumptions

 2. Simple & intuitive proofs yield conditional
derandomization with overhead c ∈ { 1,2,3,4 } + ε

 3. Broadening the theoretical basis for
superfast derandomization

Results from an upcoming work
> under preparation, again joint with Lijie Chen

 > Superfast derandomization in time n0.01 ⋅ T :

⇒ from fully uniform assumptions

⇒ wrt all polynomial-time-samplable distributions

 > Under uniform assumptions, randomness is
“indistinguishable from useless” for decision
problems and natural search problems

A sample of open questions
> new area to explore

 1. Is the overhead of n ⋅ T optimal?
> evidence without #NSETH

 2. Superfast derandomization from classical hypotheses?
> no crypto, no hardness for MASIZE/NSIZE
> boils down to the hybrid argument barrier

 3. Search-to-decision with minimal overhead?
> true given OWFs, show unconditional reduction

Thank you!

⇒ derandomization in near-linear time
⇒ simple & intuitive proofs, high-level insights

⇒ broadening theoretical basis for superfast derand

