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k read/write heads, one for each tape
A transition function § : Q X rk Q x Tk % {L,R, S}k
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0O O O O O O

e Initially: input x is on tape 1, all other tapes are blank, all
heads start at position o

e At each step: reads symbols under all heads, writes new
symbols, moves heads, changes state

e Computation ends when machine reaches gsccep: OF Greject
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e From computability perspective, single-tape TM and
multi-tape TM are equivalent.

e But from complexity perspective, multi-tape TM is more

powerful than single-tape TM.

o There can be a quadratic separation between single-tape TM
running time and multi-tape TM running time.

o Example: Checking if a string is a palindrome is in O(n) time on
multi-tape TM, but in O(»*) time on single-tape TM.

o You can sort and evaluate a circuit in time O(n logn) on
multi-tape TM, so they are indeed quite powerful!

o Later in this course, we will study Ryan Williams’ breakthrough
results on T-time in v/T-space, which holds for multi-tape TM.
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Tangent: Ohter variants of Turing machines

In multi-tape Turing machines, moving tape heads is still
slow

Random access machines (RAMs) are a model of computation
that allow for random access to memory. This is the model
underlying modern CPU architectures.

RAMs are (believed to be) more powerful than multi-tape
Turing machines.

d-dimensional multi-/single-tape Turing machines have
d-dimensional memory, and can move the tape heads to any
neighboring cell in one step.

Pointer machines allow the machine to maintain “pointers” to
arbitrary cells in the memory (instead of directly accessing the
memory as the RAMs).
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Universal Turing machine

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any
multi-tape Turing machine M and input x:
o U takes as input (M, x) (an encoding of M and x)

U accepts (M, x) if and only if M accepts x

If M runs in time T(n) on input x of length n, then U runs in time
O(T(n) log T(n)) on input (M, x)

e The same is true for other variants of Turing machines.

The proof is technical (and won't be really needed for this
course), can be found in Chapter 1 of Arora-Barak.
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Time hierarchy theorem for deterministic time
Definition (DTIME)

e ForafunctionT :IN — IN, we define DTIME[T(n)] to be the
class of languages that can be decided by a deterministic
multi-tape Turing machine in time O(T(n)).

e Thatis, L € DTIME[T(n)] if there exists a deterministic
multi-tape Turing machine M and a constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)
o Forall inputs x of length n, M halts within ¢ - T(n) steps

Remark

o Inmany situations, you want T : IN — IN to be time-constructible,
i.e., there exists a deterministic multi-tape Turing machine that can
compute T (n) given (binary encoded input) nin time O(T(n)).
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Time hierarchy theorem for deterministic time

Theorem

o LetT :IN — IN be a time-constructible function. Thereis a
language L € DTIME(T (n) log® T(n)] but L ¢ DTIME[T(n)].

Proof
Let T(n) := T(n) - loglog T(n).
Let H(M) := —Ugoek ((M, M,T‘(n))). (— means negation.)

Let L be the language decides by H. Le.,

L= {M | Ugox((M, M, T(n))) rejects}

By construction, L € DTIME[T(n) log* T(n)].
Have to prove:L ¢ DTIMEIT(n)].
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Time hierarchy theorem for deterministic time
Proof
e Let T(n) := T(n) - loglog T(n).
o Let H(M) := —Ugocc((M, M, T(n))).
o Let L be the language decides by H. L.e.,
L = {M | Udoek((M, M, T(n))) does not accept}
e For the sake of contradiction, assume L € DTIME[T(n)] and

M decides Lin O(T(n)) time.

e Then L(M) = M(M) = ~Ugoa((M, M, T(n))) = =M(M),
contradiction!

e Essentially the same proof for the hardness of the halting
problem.
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Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states
¥ is the input alphabet
I"is the tape alphabet (with £ C T")
5:Q x Tk — P(Q x ¥ x {L, R, §}") is the transition function
9o € Q is the initial state
ace. @rej € Q are the accepting and rejecting states

O O O O O

e M accepts x if and only if there is a sequence of transitions
that leads to .
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Recap: Multi-tape non-deterministic Turing
machine

Definition (NTIME)

e Forafunction T : IN — IN, we define NTIME[T(n)] to be the
class of languages that can be decided by a non-deterministic
multi-tape Turing machine in time O(T(n)).
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e Thatis, L € NTIME[T(n)] if there exists a non-deterministic
multi-tape Turing machine M and a constant ¢ such that:
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Recap: Multi-tape non-deterministic Turing
machine

Definition (NTIME)

e Forafunction T : IN — IN, we define NTIME[T(n)] to be the
class of languages that can be decided by a non-deterministic
multi-tape Turing machine in time O(T(n)).

e Thatis, L € NTIME[T(n)] if there exists a non-deterministic
multi-tape Turing machine M and a constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)
o For all inputs x of length n, M halts within ¢ - T(n) steps
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Universal non-deterministic TM

Theorem (Universal non-deterministic TM with time
boundT)

o There exists a universal non-deterministic multi-tape Turing machine
U such that for any non-deterministic multi-tape Turing machine M
and input x:
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Universal non-deterministic TM

Theorem (Universal non-deterministic TM with time
boundT)

o There exists a universal non-deterministic multi-tape Turing machine

U such that for any non-deterministic multi-tape Turing machine M
and input x:

o U takes asinput (M, x, T) (an encoding of M, x, and T)
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Universal non-deterministic TM

Theorem (Universal non-deterministic TM with time
boundT)

o There exists a universal non-deterministic multi-tape Turing machine
U such that for any non-deterministic multi-tape Turing machine M
and input x:

o U takes asinput (M, x, T) (an encoding of M, x, and T)
o Uaccepts (M, x, T) if and only if M accepts x within time T.
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Universal non-deterministic TM

Theorem (Universal non-deterministic TM with time
boundT)

o There exists a universal non-deterministic multi-tape Turing machine
U such that for any non-deterministic multi-tape Turing machine M
and input x:

o U takes asinput (M, x, T) (an encoding of M, x, and T)
o Uaccepts (M, x, T) if and only if M accepts x within time T.
o Urunsintime O(T(n)).
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Time hierarchy theorem for non-deterministic
time

e Before stating and prove the non-deterministic time
hierarchy theorem,




TIME HIERARCHY THEOREM FOR NON-DET.
[e]e]e] o}

Time hierarchy theorem for non-deterministic
time

e Before stating and prove the non-deterministic time
hierarchy theorem,

e Question: Can you think about why we cannot use the same
proof as the deterministic time hierarchy theorem?
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Time hierarchy theorem for non-deterministic
time

e Before stating and prove the non-deterministic time
hierarchy theorem,

e Question: Can you think about why we cannot use the same
proof as the deterministic time hierarchy theorem?

e Itseems for deterministic time hierarchy theorem, we only
used the existence of universal Turing machine? And such
machine exists for non-deterministic time as well?
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Time hierarchy theorem for non-deterministic
time

e Before stating and prove the non-deterministic time
hierarchy theorem,

e Question: Can you think about why we cannot use the same
proof as the deterministic time hierarchy theorem?

e Itseems for deterministic time hierarchy theorem, we only
used the existence of universal Turing machine? And such
machine exists for non-deterministic time as well?

e Answer: “Let H(M) := —Uqoc((M, M, T(n)>).” This — cannot
be done for non-deterministic Turing machine!
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Time hierarchy theorem for non-deterministic
time

Theorem (Non-deterministic Time Hierarchy Theorem)

o Letf,g:IN — IN be time-constructible functions such that
f(n+1) =o0(g(n)). Then

NTIME[f (n)] € NTIME[g(n)]
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Time hierarchy theorem for non-deterministic
time

Theorem (Non-deterministic Time Hierarchy Theorem)

o Letf,g:IN — IN be time-constructible functions such that
f(n+1) =o0(g(n)). Then

NTIME[f (n)] € NTIME[g(n)]

e Proof: see the white board!
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infinitey often and almost everywhere separation

e After studying the non-deterministic time hierarchy theorem,
can you name a serious issue with it?

e Answer: It only shows for a very few input lengths, the hard
language is hard.

¢ Infinite often separation (default): The language L is not in
NTIME[T(n)] if and only if L’ € NTIMEIT(n)], for infinitely
many input lengths n, L, # L/. (here, L, is the language L on
input length n.)

e Almost everywhere separation: For every L’ € NTIME[T(n)],
for all except finitely many n, L, # L.

e Big open question: prove an almost everywhere separation
between NTIME[r?] and NTIME[2"].
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machine in time O(T(n)) with making at most G(n)
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A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS|[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

e Thatis, L € NTIMEGUESSIT(n), G(n)] if there exists a
non-deterministic multi-tape Turing machine M and a
constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)
o For all inputs x of length n, M halts within ¢ - T(n) steps and
makes at most G(n) non-deterministic guesses.
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Theorem (Non-deterministic time hierarchy theorem with

bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W(n)].




A weaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theorem with
bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W(n)].

e Proof: see the white board!
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