Computational Complexity Theory Fall 2025

Time complexity and Hierarchy theorems September 2 and 4, 2025

Lijie Chen

University of California, Berkeley

• Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

- Office Hours: 2:00 3:00 PM, SODA 627, Tuesday
- Additional Office Hours?: 11:30 AM 12:30 PM, SODA 627, Thursday

- Office Hours: 2:00 3:00 PM, SODA 627, Tuesday
- Additional Office Hours?: 11:30 AM 12:30 PM, SODA 627, Thursday
- First HW out: Sept 4

- Office Hours: 2:00 3:00 PM, SODA 627, Tuesday
- Additional Office Hours?: 11:30 AM 12:30 PM, SODA 627, Thursday
- First HW out: Sept 4
- Suggested projects list out: Sept 4

- Office Hours: 2:00 3:00 PM, SODA 627, Tuesday
- Additional Office Hours?: 11:30 AM 12:30 PM, SODA 627, Thursday
- First HW out: Sept 4
- Suggested projects list out: Sept 4
- Course website: https://chen-lijie.github.io/cs278-complexity.html

• A multi-tape Turing machine M consists of:

- A multi-tape Turing machine M consists of:
 - A finite set of states Q

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - *k* tapes, each infinite in both directions

- A multi-tape Turing machine M consists of:
 - o A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - o *k* tapes, each infinite in both directions
 - *k* read/write heads, one for each tape

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - o *k* tapes, each infinite in both directions
 - o k read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - o k tapes, each infinite in both directions
 - o *k* read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - A start state q○ ∈ Q

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - *k* tapes, each infinite in both directions
 - *k* read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - A start state $q_0 \in Q$
 - ∘ Accept and reject states q_{accept} , q_{reject} ∈ Q

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - o *k* tapes, each infinite in both directions
 - o k read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - A start state $q_0 \in Q$
 - Accept and reject states q_{accept} , $q_{reject} \in Q$
- Initially: input x is on tape 1, all other tapes are blank, all heads start at position o

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - *k* tapes, each infinite in both directions
 - o k read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - A start state $q_0 \in Q$
 - Accept and reject states q_{accept} , $q_{reject} \in Q$
- Initially: input x is on tape 1, all other tapes are blank, all heads start at position o
- At each step: reads symbols under all heads, writes new symbols, moves heads, changes state

- A multi-tape Turing machine M consists of:
 - A finite set of states Q
 - ∘ An input alphabet Σ and tape alphabet Γ (where $\Sigma \subseteq \Gamma$)
 - *k* tapes, each infinite in both directions
 - *k* read/write heads, one for each tape
 - ∘ A transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$
 - A start state $q_0 \in Q$
 - Accept and reject states q_{accept} , $q_{reject} \in Q$
- Initially: input *x* is on tape 1, all other tapes are blank, all heads start at position 0
- At each step: reads symbols under all heads, writes new symbols, moves heads, changes state
- Computation ends when machine reaches q_{accept} or q_{reject}

• From *computability* perspective, single-tape TM and multi-tape TM are equivalent.

- From *computability* perspective, single-tape TM and multi-tape TM are equivalent.
- But from *complexity* perspective, multi-tape TM is more powerful than single-tape TM.

- From *computability* perspective, single-tape TM and multi-tape TM are equivalent.
- But from *complexity* perspective, multi-tape TM is more powerful than single-tape TM.
 - There can be a quadratic separation between single-tape TM running time and multi-tape TM running time.

- From *computability* perspective, single-tape TM and multi-tape TM are equivalent.
- But from *complexity* perspective, multi-tape TM is more powerful than single-tape TM.
 - There can be a quadratic separation between single-tape TM running time and multi-tape TM running time.
 - **Example**: Checking if a string is a palindrome is in O(n) time on multi-tape TM, but in $O(n^2)$ time on single-tape TM.

- From *computability* perspective, single-tape TM and multi-tape TM are equivalent.
- But from *complexity* perspective, multi-tape TM is more powerful than single-tape TM.
 - There can be a quadratic separation between single-tape TM running time and multi-tape TM running time.
 - **Example**: Checking if a string is a palindrome is in O(n) time on multi-tape TM, but in $O(n^2)$ time on single-tape TM.
 - You can **sort** and evaluate a **circuit** in time O(n log n) on multi-tape TM, so they are indeed quite powerful!

- From *computability* perspective, single-tape TM and multi-tape TM are equivalent.
- But from *complexity* perspective, multi-tape TM is more powerful than single-tape TM.
 - There can be a quadratic separation between single-tape TM running time and multi-tape TM running time.
 - **Example**: Checking if a string is a palindrome is in O(n) time on multi-tape TM, but in $O(n^2)$ time on single-tape TM.
 - You can **sort** and evaluate a **circuit** in time O(n log n) on multi-tape TM, so they are indeed quite powerful!
 - o Later in this course, we will study Ryan Williams' breakthrough results on T-time in \sqrt{T} -space, which holds for multi-tape TM.

• In multi-tape Turing machines, moving tape heads is still slow

- In multi-tape Turing machines, moving tape heads is still slow
- Random access machines (RAMs) are a model of computation that allow for random access to memory. This is the model underlying modern CPU architectures.

- In multi-tape Turing machines, moving tape heads is still slow
- Random access machines (RAMs) are a model of computation that allow for random access to memory. This is the model underlying modern CPU architectures.
- RAMs are (believed to be) more powerful than multi-tape Turing machines.

- In multi-tape Turing machines, moving tape heads is still slow
- Random access machines (RAMs) are a model of computation that allow for random access to memory. This is the model underlying modern CPU architectures.
- RAMs are (believed to be) more powerful than multi-tape Turing machines.
- d-dimensional multi-/single-tape Turing machines have d-dimensional memory, and can move the tape heads to any neighboring cell in one step.

- In multi-tape Turing machines, moving tape heads is still slow
- Random access machines (RAMs) are a model of computation that allow for random access to memory. This is the model underlying modern CPU architectures.
- RAMs are (believed to be) more powerful than multi-tape Turing machines.
- d-dimensional multi-/single-tape Turing machines have d-dimensional memory, and can move the tape heads to any neighboring cell in one step.
- Pointer machines allow the machine to maintain "pointers" to arbitrary cells in the memory (instead of directly accessing the memory as the RAMs).

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any multi-tape Turing machine M and input x:

• U takes as input $\langle M, x \rangle$ (an encoding of M and x)

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any multi-tape Turing machine M and input x:

- U takes as input $\langle M, x \rangle$ (an encoding of M and x)
- U accepts $\langle M, x \rangle$ if and only if M accepts x

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any multi-tape Turing machine M and input x:

- U takes as input $\langle M, x \rangle$ (an encoding of M and x)
- U accepts $\langle M, x \rangle$ if and only if M accepts x
- If M runs in time T(n) on input x of length n, then U runs in time $O(T(n) \log T(n))$ on input $\langle M, x \rangle$

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any multi-tape Turing machine M and input x:

- U takes as input $\langle M, x \rangle$ (an encoding of M and x)
- U accepts $\langle M, x \rangle$ if and only if M accepts x
- If M runs in time T(n) on input x of length n, then U runs in time $O(T(n) \log T(n))$ on input $\langle M, x \rangle$

• The same is true for other variants of Turing machines.

Theorem (Universal Multi-tape TM)

There exists a universal multi-tape Turing machine U such that for any multi-tape Turing machine M and input x:

- U takes as input $\langle M, x \rangle$ (an encoding of M and x)
- U accepts $\langle M, x \rangle$ if and only if M accepts x
- If M runs in time T(n) on input x of length n, then U runs in time $O(T(n) \log T(n))$ on input $\langle M, x \rangle$

- The same is true for other variants of Turing machines.
- The proof is technical (and won't be really needed for this course), can be found in Chapter 1 of Arora-Barak.

Theorem (Universal multi-tape TM with time bound T)

There exists a universal multi-tape Turing machine U_{clock} such that for any multi-tape Turing machine M, input x, and time bound T:

• U_{clock} takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)

Theorem (Universal multi-tape TM with time bound T)

There exists a universal multi-tape Turing machine U_{clock} such that for any multi-tape Turing machine M, input x, and time bound T:

- U_{clock} takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)
- U_{clock} accepts $\langle M, x, T \rangle$ if and only if M accepts x within time T

Theorem (Universal multi-tape TM with time bound T)

There exists a universal multi-tape Turing machine U_{clock} such that for any multi-tape Turing machine M, input x, and time bound T:

- U_{clock} takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)
- U_{clock} accepts $\langle M, x, T \rangle$ if and only if M accepts x within time T
- U_{clock} runs in time $O(T(n) \log T(n))$ on input $\langle M, x, T \rangle$

Universal Turing machine

Theorem (Universal multi-tape TM with time bound T)

There exists a universal multi-tape Turing machine U_{clock} such that for any multi-tape Turing machine M, input x, and time bound T:

- U_{clock} takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)
- U_{clock} accepts $\langle M, x, T \rangle$ if and only if M accepts x within time T
- U_{clock} runs in time $O(T(n) \log T(n))$ on input $\langle M, x, T \rangle$

• The same is true for other variants of Turing machines.

• For a function $T : \mathbb{N} \to \mathbb{N}$, we define DTIME[T(n)] to be the class of languages that can be decided by a deterministic multi-tape Turing machine in time O(T(n)).

- For a function $T : \mathbb{N} \to \mathbb{N}$, we define DTIME[T(n)] to be the class of languages that can be decided by a deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in DTIME[T(n)]$ if there exists a deterministic multi-tape Turing machine M and a constant c such that:

- For a function $T : \mathbb{N} \to \mathbb{N}$, we define DTIME[T(n)] to be the class of languages that can be decided by a deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in DTIME[T(n)]$ if there exists a deterministic multi-tape Turing machine M and a constant c such that:
 - M decides L (i.e., M accepts x if and only if $x \in L$)

- For a function $T: \mathbb{N} \to \mathbb{N}$, we define DTIME[T(n)] to be the class of languages that can be decided by a deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in DTIME[T(n)]$ if there exists a deterministic multi-tape Turing machine M and a constant c such that:
 - M decides L (i.e., M accepts x if and only if $x \in L$)
 - For all inputs x of length n, M halts within $c \cdot T(n)$ steps

Definition (DTIME)

Time hierarchy theorem for deterministic time

- For a function $T: \mathbb{N} \to \mathbb{N}$, we define DTIME[T(n)] to be the class of languages that can be decided by a deterministic
- That is, $L \in DTIME[T(n)]$ if there exists a deterministic multi-tape Turing machine M and a constant c such that:
 - o M decides L (i.e., M accepts x if and only if $x \in L$)

multi-tape Turing machine in time O(T(n)).

o For all inputs x of length n, M halts within $c \cdot T(n)$ steps

Remark

• In many situations, you want $T : \mathbb{N} \to \mathbb{N}$ to be time-constructible, i.e., there exists a deterministic multi-tape Turing machine that can compute T(n) given (binary encoded input) n in time O(T(n)).

Theorem

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

Theorem

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

• Let $T(n) := T(n) \cdot \log \log T(n)$.

Theorem

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

- Let $T(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$. (\neg means negation.)

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

Theorem

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\text{clock}}(\langle M, M, T(n) \rangle)$. (\neg means negation.)
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ rejects}\}$$

Theorem

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\text{clock}}(\langle M, M, T(n) \rangle)$. (\neg means negation.)
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ rejects}\}$$

• By construction, $L \in DTIME[T(n) \log^2 T(n)]$.

Theorem

• Let $T : \mathbb{N} \to \mathbb{N}$ be a time-constructible function. There is a language $L \in DTIME[T(n) \log^2 T(n)]$ but $L \notin DTIME[T(n)]$.

Proof

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\text{clock}}(\langle M, M, T(n) \rangle)$. (\neg means negation.)
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ rejects}\}$$

- By construction, $L \in DTIME[T(n) \log^2 T(n)]$.
- Have to prove: $L \notin DTIME[T(n)]$.

• Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$.

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$.
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ does not accept}\}$$

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$.
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ does not accept}\}$$

• For the sake of contradiction, assume $L \in DTIME[T(n)]$ and M decides L in O(T(n)) time.

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$.
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ does not accept}\}$$

- For the sake of contradiction, assume $L \in DTIME[T(n)]$ and M decides L in O(T(n)) time.
- Then $L(M) = M(M) = \neg U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) = \neg M(M)$, contradiction!

- Let $\widetilde{T}(n) := T(n) \cdot \log \log T(n)$.
- Let $H(M) := \neg U_{\operatorname{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$.
- Let *L* be the language decides by *H*. I.e.,

$$L = \{M \mid U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) \text{ does not accept}\}$$

- For the sake of contradiction, assume $L \in DTIME[T(n)]$ and M decides L in O(T(n)) time.
- Then $L(M) = M(M) = \neg U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle) = \neg M(M)$, contradiction!
- Essentially the same proof for the hardness of the halting problem.

Definition (Multi-tape non-deterministic Turing machine)

• A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where:

- A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where:
 - o Q is a finite set of states

- A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$ where:
 - Q is a finite set of states
 - \circ Σ is the input alphabet

- A multi-tape non-deterministic Turing machine is a tuple
 - $M = (Q, \Sigma, \Gamma, \delta, q_o, q_{acc}, q_{rej})$ where:
 - o Q is a finite set of states
 - \circ Σ is the input alphabet
 - ∘ Γ is the tape alphabet (with $\Sigma \subseteq \Gamma$)

- A multi-tape non-deterministic Turing machine is a tuple
 - $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where:
 - o Q is a finite set of states
 - \circ Σ is the input alphabet
 - ∘ Γ is the tape alphabet (with $\Sigma \subseteq \Gamma$)
 - $\delta: Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, R, S\}^k)$ is the transition function

- A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$ where:
 - Q is a finite set of states
 - Σ is the input alphabet
 - \circ Γ is the tape alphabet (with $\Sigma \subset \Gamma$)
 - $\delta : Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, R, S\}^k)$ is the transition function
 - $\circ q_0 \in Q$ is the initial state

- A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$ where:
 - Q is a finite set of states
 - \circ Σ is the input alphabet
 - \circ Γ is the tape alphabet (with $\Sigma \subseteq \Gamma$)
 - $\delta : Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, R, S\}^k)$ is the transition function
 - $\circ q_{\circ} \in Q$ is the initial state
 - $\circ q_{acc}, q_{rej} \in Q$ are the accepting and rejecting states

- A multi-tape non-deterministic Turing machine is a tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rei})$ where:
 - Q is a finite set of states
 - \circ Σ is the input alphabet
 - \circ Γ is the tape alphabet (with $\Sigma \subseteq \Gamma$)
 - $\delta : Q \times \Gamma^k \to \mathcal{P}(Q \times \Gamma^k \times \{L, R, S\}^k)$ is the transition function
 - $\circ q_{\circ} \in Q$ is the initial state
 - $\circ q_{acc}, q_{rej} \in Q$ are the accepting and rejecting states
- M accepts x if and only if there is a sequence of transitions that leads to q_{acc}.

Definition (NTIME)

• For a function $T: \mathbb{N} \to \mathbb{N}$, we define NTIME[T(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)).

Definition (NTIME)

- For a function $T: \mathbb{N} \to \mathbb{N}$, we define NTIME[T(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in \text{NTIME}[T(n)]$ if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:

Definition (NTIME)

- For a function $T : \mathbb{N} \to \mathbb{N}$, we define NTIME[T(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in \text{NTIME}[T(n)]$ if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:
 - o M decides L (i.e., M accepts x if and only if $x \in L$)

Definition (NTIME)

- For a function $T: \mathbb{N} \to \mathbb{N}$, we define NTIME[T(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)).
- That is, $L \in \text{NTIME}[T(n)]$ if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:
 - o M decides L (i.e., M accepts x if and only if $x \in L$)
 - For all inputs x of length n, M halts within $c \cdot T(n)$ steps

Theorem (Universal non-deterministic TM with time bound T)

 There exists a universal non-deterministic multi-tape Turing machine U such that for any non-deterministic multi-tape Turing machine M and input x:

Theorem (Universal non-deterministic TM with time bound T)

- There exists a universal non-deterministic multi-tape Turing machine U such that for any non-deterministic multi-tape Turing machine M and input x:
 - \circ U takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)

Theorem (Universal non-deterministic TM with time bound T)

- There exists a universal non-deterministic multi-tape Turing machine U such that for any non-deterministic multi-tape Turing machine M and input x:
 - U takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)
 - U accepts $\langle M, x, T \rangle$ if and only if M accepts x within time T.

Theorem (Universal non-deterministic TM with time bound T)

- There exists a universal non-deterministic multi-tape Turing machine U such that for any non-deterministic multi-tape Turing machine M and input x:
 - U takes as input $\langle M, x, T \rangle$ (an encoding of M, x, and T)
 - U accepts $\langle M, x, T \rangle$ if and only if M accepts x within time T.
 - \circ U runs in time O(T(n)).

• Before stating and prove the non-deterministic time hierarchy theorem,

- Before stating and prove the non-deterministic time hierarchy theorem,
- **Question**: Can you think about why we cannot use the same proof as the deterministic time hierarchy theorem?

- Before stating and prove the non-deterministic time hierarchy theorem,
- **Question**: Can you think about why we cannot use the same proof as the deterministic time hierarchy theorem?
- It seems for deterministic time hierarchy theorem, we only used the existence of universal Turing machine? And such machine exists for non-deterministic time as well?

- Before stating and prove the non-deterministic time hierarchy theorem,
- **Question**: Can you think about why we cannot use the same proof as the deterministic time hierarchy theorem?
- It seems for deterministic time hierarchy theorem, we only used the existence of universal Turing machine? And such machine exists for non-deterministic time as well?
- **Answer**: "Let $H(M) := \neg U_{\text{clock}}(\langle M, M, \widetilde{T}(n) \rangle)$." This \neg cannot be done for non-deterministic Turing machine!

Theorem (Non-deterministic Time Hierarchy Theorem)

• Let $f,g: \mathbb{N} \to \mathbb{N}$ be time-constructible functions such that f(n+1) = o(g(n)). Then

$$NTIME[f(n)] \subseteq NTIME[g(n)]$$

Theorem (Non-deterministic Time Hierarchy Theorem)

• Let $f, g : \mathbb{N} \to \mathbb{N}$ be time-constructible functions such that f(n+1) = o(g(n)). Then

$$NTIME[f(n)] \subseteq NTIME[g(n)]$$

• **Proof:** see the white board!

• After studying the non-deterministic time hierarchy theorem, can you name a serious issue with it?

- After studying the non-deterministic time hierarchy theorem, can you name a serious issue with it?
- **Answer**: It only shows for a very few input lengths, the hard language is hard.

- After studying the non-deterministic time hierarchy theorem, can you name a serious issue with it?
- **Answer**: It only shows for a very few input lengths, the hard language is hard.
- Infinite often separation (default): The language L is not in NTIME[T(n)] if and only if $L' \in \text{NTIME}[T(n)]$, for infinitely many input lengths n, $L_n \neq L'_n$. (here, L_n is the language L on input length n.)

- After studying the non-deterministic time hierarchy theorem, can you name a serious issue with it?
- **Answer**: It only shows for a very few input lengths, the hard language is hard.
- Infinite often separation (default): The language L is not in NTIME[T(n)] if and only if $L' \in \text{NTIME}[T(n)]$, for infinitely many input lengths n, $L_n \neq L'_n$. (here, L_n is the language L on input length n.)
- Almost everywhere separation: For every $L' \in \text{NTIME}[T(n)]$, for all except finitely many n, $L_n \neq L'_n$.

- After studying the non-deterministic time hierarchy theorem, can you name a serious issue with it?
- **Answer**: It only shows for a very few input lengths, the hard language is hard.
- Infinite often separation (default): The language L is not in NTIME[T(n)] if and only if $L' \in \text{NTIME}[T(n)]$, for infinitely many input lengths n, $L_n \neq L'_n$. (here, L_n is the language L on input length n.)
- Almost everywhere separation: For every $L' \in \text{NTIME}[T(n)]$, for all except finitely many $n, L_n \neq L'_n$.
- **Big open question**: prove an almost everywhere separation between $NTIME[n^2]$ and $NTIME[2^n]$.

Definition (Non-deterministic time with bounded guess)

• For a function $T, G : \mathbb{N} \to \mathbb{N}$, we define NTIMEGUESS[T(n), G(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)) with making at most G(n) non-deterministic guesses.

Definition (Non-deterministic time with bounded guess)

- For a function $T, G : \mathbb{N} \to \mathbb{N}$, we define NTIMEGUESS[T(n), G(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)) with making at most G(n) non-deterministic guesses.
- That is, L ∈ NTIMEGUESS[T(n), G(n)] if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:

Definition (Non-deterministic time with bounded guess)

- For a function $T, G : \mathbb{N} \to \mathbb{N}$, we define NTIMEGUESS[T(n), G(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)) with making at most G(n) non-deterministic guesses.
- That is, L ∈ NTIMEGUESS[T(n), G(n)] if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:
 - M decides L (i.e., M accepts x if and only if $x \in L$)

Definition (Non-deterministic time with bounded guess)

- For a function $T, G : \mathbb{N} \to \mathbb{N}$, we define NTIMEGUESS[T(n), G(n)] to be the class of languages that can be decided by a non-deterministic multi-tape Turing machine in time O(T(n)) with making at most G(n) non-deterministic guesses.
- That is, L ∈ NTIMEGUESS[T(n), G(n)] if there exists a non-deterministic multi-tape Turing machine M and a constant c such that:
 - M decides L (i.e., M accepts x if and only if $x \in L$)
 - For all inputs x of length n, M halts within $c \cdot T(n)$ steps and makes at most G(n) non-deterministic guesses.

Theorem (Non-deterministic time hierarchy theorem with bounded guess)

• Let $T, G, W \colon \mathbb{N} \to \mathbb{N}$ be time-constructible functions such that G(n) = o(T(n)) and W(n) = o(n). Then there is a language $L \in NTIME[T(n)]$ but L is almost-everywhere separated from NTIMEGUESS[G(n), W(n)].

Theorem (Non-deterministic time hierarchy theorem with bounded guess)

• Let $T, G, W \colon \mathbb{N} \to \mathbb{N}$ be time-constructible functions such that G(n) = o(T(n)) and W(n) = o(n). Then there is a language $L \in NTIME[T(n)]$ but L is almost-everywhere separated from NTIMEGUESS[G(n), W(n)].

• **Proof:** see the white board!