Computational Complexity Theory
Fall 2025

Time complexity and Hierarchy theorems: Part I1
September 4, 2025

Lijie Chen

University of California, Berkeley

% lijiechen@berkeley.edu

mailto:lijiechen@berkeley.edu

Some Logistics

e Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

Some Logistics

e Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

e Additional Office Hours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

Some Logistics

e Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

e Additional Office Hours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

e First HW out: Sept 5

Some Logistics

Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

Additional Office Hours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

First HW out: Sept 5

Some suggested projects (mostly survey) already out on the
course website

Some Logistics

e Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

e Additional Office Hours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

e First HW out: Sept 5

e Some suggested projects (mostly survey) already out on the
course website

e Course website:
https://chen-lijie.github.io/cs278-complexity.html

Some Logistics

e Office Hours: 2:00 - 3:00 PM, SODA 627, Tuesday

e Additional Office Hours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

e First HW out: Sept 5

e Some suggested projects (mostly survey) already out on the
course website

e Course website:
https://chen-lijie.github.io/cs278-complexity.html

e Course discord: https://discord.gg/U3965mgE2p

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven't covered in class. (More
details about the open direction projects coming next week.)

e You goal is very simple: pick a frontier complexity paper and
understand it.

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven't covered in class. (More
details about the open direction projects coming next week.)

e You goal is very simple: pick a frontier complexity paper and
understand it.

e This may require reading some prior works.

s
Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven't covered in class. (More
details about the open direction projects coming next week.)

e You goal is very simple: pick a frontier complexity paper and
understand it.

e This may require reading some prior works.

e Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

s
Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven't covered in class. (More
details about the open direction projects coming next week.)

e You goal is very simple: pick a frontier complexity paper and
understand it.

e This may require reading some prior works.

e Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

e Some of the harder papers may require you to collaborate
with others.

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

e Inthe prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

e Inthe prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

e For each of the proof, the idea is to construct a hard language
H such that, letting M, M,, .. ., M,, ... be an enumeration of
all Turing machines (for say DTIME[T(n)]), for every M; there
exists an input x; such that M;(x;) # H(x;).

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

e Inthe prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

e For each of the proof, the idea is to construct a hard language
H such that, letting M, M,, .. ., M,, ... be an enumeration of
all Turing machines (for say DTIME[T(n)]), for every M; there
exists an input x; such that M;(x;) # H(x;).

e DTIME hierachy theorem: H((M;)) # M;({M;)), i.e., the
input x; is the encoding of M; itself.

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

e Inthe prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

e For each of the proof, the idea is to construct a hard language
H such that, letting M, M,, .. ., M,, ... be an enumeration of
all Turing machines (for say DTIME[T(n)]), for every M; there
exists an input x; such that M;(x;) # H(x;).

e DTIME hierachy theorem: H((M;)) # M;({M;)), i.e., the
input x; is the encoding of M; itself.

e NTIME hierachy theorem: H(1") # M;(1") for some
t e [m;, 2f)],

infinitey often and almost everywhere separation
e You can always adding dummy states to a Turing machine

(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

infinitey often and almost everywhere separation

e You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

e Infinite often separation (default): The language L is not in
NTIME[T (n)] if and only if for all L’ € NTIMEIT(n)], for
infinitely many input lengths n, L, # L,. (here, L, is the
language L on input length n.)

infinitey often and almost everywhere separation

e You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

e Infinite often separation (default): The language L is not in
NTIME[T (n)] if and only if for all L’ € NTIMEIT(n)], for
infinitely many input lengths n, L, # L,. (here, L, is the
language L on input length n.)

e Almost everywhere separation: For all L’ € NTIME[T(n)], for
all except finitely many n, L, # L/.

PROBLEM WITH NTIME HIERARCHY THEOREM
©0000000000000000

infinitey often and almost everywhere separation

e You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

e Infinite often separation (default): The language L is not in
NTIME[T (n)] if and only if for all L’ € NTIMEIT(n)], for
infinitely many input lengths n, L, # L,. (here, L, is the
language L on input length n.)

e Almost everywhere separation: For all L’ € NTIME[T(n)], for
all except finitely many n, L, # L/.

e Big open question: prove an almost everywhere separation
between NTIME [n?*] and NTIME[2"].

PROBLEM WITH NTIME HIERARCHY THEOREM
0O@000000000000000

Why is infinite often separation not enough?

e For the hard language H, suppose there is a NTIME[T(n)]
machine M such that H(x) = M(x) for all x of length n, except

zk
when n is of the form 22° for some k € IN.

PROBLEM WITH NTIME HIERARCHY THEOREM
0O@000000000000000

Why is infinite often separation not enough?

e For the hard language H, suppose there is a NTIME[T(n)]
machine M such that H(x) = M(x) for all x of length n, except

Zk
when n is of the form 2*° for some k € IN.
e This is allowed for infinite often separation (H can still be hard

for NTIME[T(n)]). But “practically”, H is easy for
NTIME[T(n)].

PROBLEM WITH NTIME HIERARCHY THEOREM
00@00000000000000

An almost-everywhere deterministic time
hierarchy theorem

Theorem

o Thereisalanguage L € TIME[n*] such that forevery L' € TIME(n],
for all except finitely manyn, L, # L,.

PROBLEM WITH NTIME HIERARCHY THEOREM
00@00000000000000

An almost-everywhere deterministic time
hierarchy theorem

Theorem
o Thereisalanguage L € TIME[n*] such that forevery L' € TIME(n],
for all except finitely manyn, L, # L,.

e Same holds for NTIME[T (n) - log” T(n)] and NTIME[T (n)].

An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,

An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,

e Let

H = {{M), | M({M),) rejects in [(M),|"* steps,n > [(M)|}

PROBLEM WITH NTIME HIERARCHY THEOREM
000@0000000000000

An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,

o Let
H = {{M), | M({M),) rejects in [(M),|"* steps,n > [(M)|}

e Canshow H € TIME[n?*] and, and it is almost-everywhere
separated from TIMEn].

PROBLEM WITH NTIME HIERARCHY THEOREM
0O000@000000000000

A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

PROBLEM WITH NTIME HIERARCHY THEOREM
0O000@000000000000

A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

e Thatis, L € NTIMEGUESSIT(n), G(n)] if there exists a
non-deterministic multi-tape Turing machine M and a
constant ¢ such that:

PROBLEM WITH NTIME HIERARCHY THEOREM
0O000@000000000000

A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

e Thatis, L € NTIMEGUESSIT(n), G(n)] if there exists a
non-deterministic multi-tape Turing machine M and a
constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)

PROBLEM WITH NTIME HIERARCHY THEOREM
0O000@000000000000

A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

e Thatis, L € NTIMEGUESSIT(n), G(n)] if there exists a
non-deterministic multi-tape Turing machine M and a
constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)
o For all inputs x of length n, M halts within ¢ - T(n) steps and
makes at most G(n) non-deterministic guesses.

PROBLEM WITH NTIME HIERARCHY THEOREM
0O0000e00000000000

A weaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theorem with

bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W (n)].

PROBLEM WITH NTIME HIERARCHY THEOREM
0O0000e00000000000

A weaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theorem with
bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W (n)].

e Proof: see the white board!

Oracles and relativization
Definition (Oracle Turing Machine)

e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

PROBLEM WITH NTIME HIERARCHY THEOREM
0O00000e0000000000

Oracles and relativization

Definition (Oracle Turing Machine)
e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two

special states qguery and Ganwer-

PROBLEM WITH NTIME HIERARCHY THEOREM
0O00000e0000000000

Oracles and relativization
Definition (Oracle Turing Machine)
e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:

Oracles and relativization
Definition (Oracle Turing Machine)
e Let O: {o,1}* — {o,1} be a function denoted as the oracle.
e An O-oracle multi-tape Turing machine is a multi-tape

Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:
o Write a string y on the oracle tape and enter state qgyery

Oracles and relativization
Definition (Oracle Turing Machine)

e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:
o Write a string y on the oracle tape and enter state qgyery
o In the next step, the machine automatically transitions to state
Qanswer and the oracle tape contains O(y)

Oracles and relativization
Definition (Oracle Turing Machine)

e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:
o Write a string y on the oracle tape and enter state qgyery
o In the next step, the machine automatically transitions to state
Qanswer and the oracle tape contains O(y)
o This counts as a single computation step

Oracles and relativization
Definition (Oracle Turing Machine)

e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:
o Write a string y on the oracle tape and enter state qgyery
o In the next step, the machine automatically transitions to state
Qanswer and the oracle tape contains O(y)
o This counts as a single computation step

e The running time includes all computation steps, including
oracle queries.

Oracle complexity classes

Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

Oracle complexity classes

Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

e Thatis, L € DTIME®[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machine M and a constant ¢ such
that:

Oracle complexity classes

Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

e Thatis, L € DTIME®[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machine M and a constant ¢ such
that:

o MY decides L (i.e., M® accepts x if and only if x € L)

Oracle complexity classes

Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

e Thatis, L € DTIME®[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machine M and a constant ¢ such
that:

o MY decides L (i.e., M® accepts x if and only if x € L)
o For allinputs x of length n, M® halts within ¢ - T(n) steps

Oracle complexity classes

Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

e Thatis, L € DTIME®[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machine M and a constant ¢ such
that:

o MY decides L (i.e., M® accepts x if and only if x € L)

o For allinputs x of length n, M® halts within ¢ - T(n) steps

e Similarly, we can define NTIME® [T (n)] for non-deterministic
O-oracle Turing machines.

Oracles and relativization

All previous results holds for all O-oracle Turing machines.

Theorem (Time hierarchy theorem for oracle Turing

machines)

e Forany oracle O, and any time-constructible functions t,, t, with
t,(n) logt,(n) = o(t,(n)), we have:

DTIME®[t,(n)] € DTIME®[t,(n)]

To prove this, we only need to show the existence of a universal
Turing machine for O-oracle Turing machines.

Oracles and relativization

All previous results holds for all O-oracle Turing machines.

Theorem (Time hierarchy theorem for oracle Turing
machines)

e Forany oracle O, and any time-constructible functions t,, t, with
t.(n) logt,(n) = o(t,(n)), we have:

DTIME®[t,(n)] € DTIME®[t,(n)]

o Similarly, for any oracle O, and any time-constructible functions f, g
withf(n+ 1) = o(g(n)), we have:

NTIME® [f (n)] € NTIME® [g(n)]

To prove this, we only need to show the existence of a universal
Turing machine for O-oracle Turing machines.

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000 e0000000

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

e Forany oracle O, there exists a universal O-oracle Turing machine
U such that:

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000 e0000000

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)
e Forany oracle O, there exists a universal O-oracle Turing machine
U9 such that:

o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000 e0000000

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

For any oracle O, there exists a universal O-oracle Turing machine

U such that:

o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string

o UY((M,x)) = M®(x) (same output)

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000 e0000000

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

e Forany oracle O, there exists a universal O-oracle Turing machine
U such that:
o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string
o UY((M,x)) = M®(x) (same output)
o IfM® runsin timet(n) on input x where x| = n, then U® vuns in time
O(t(n) logt(n)) oninput (M, x)

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000 e0000000

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

e Forany oracle O, there exists a universal O-oracle Turing machine
U such that:
o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string
o UY((M,x)) = M®(x) (same output)
o IfM® runsin timet(n) on input x where x| = n, then U® vuns in time
O(t(n) logt(n)) oninput (M, x)

o The simulation overhead is the same as in the non-orvacle case, and
oracle queries are handled transparently.

000000000080 00000
Relativization

e A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

000000000080 00000
Relativization

e A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

e Ifatheorem T can be proven using only relativizing

techniques, then T? (the relativized version of T with oracle
O) holds for all oracles O.

000000000080 00000
Relativization

e A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

e Ifatheorem T can be proven using only relativizing
techniques, then T? (the relativized version of T with oracle
O) holds for all oracles O.

e Conversely, if there exist oracles O, and O, such that T is
true but T9- is false, then T cannot be proven using
relativizing techniques alone.

000000000080 00000
Relativization

e A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

e Ifatheorem T can be proven using only relativizing
techniques, then T? (the relativized version of T with oracle
O) holds for all oracles O.

e Conversely, if there exist oracles O, and O, such that T is
true but T9- is false, then T cannot be proven using
relativizing techniques alone.

e Example: The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracle O.

PROBLEM WITH NTIME HIERARCHY THEOREM
00000000000 e00000

Relativization

e Ifthe proof relativizes, it means the proof just does not “open
up” the computation enough.

PROBLEM WITH NTIME HIERARCHY THEOREM
00000000000 e00000

Relativization

e Ifthe proof relativizes, it means the proof just does not “open
up” the computation enough.

e The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

PROBLEM WITH NTIME HIERARCHY THEOREM
00000000000 e00000

Relativization

e Ifthe proof relativizes, it means the proof just does not “open
up” the computation enough.

e The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

e Alot of early results in complexity theory are relativizing.

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000000 e0000

The Relativization Barrier for Pvs NP

e The Pvs NP question asks whether P = NP.

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000000 e0000

The Relativization Barrier for Pvs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:

The Relativization Barrier for P vs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:

o PYr = NP9 (P equals NP relative to oracle O,)

The Relativization Barrier for P vs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:

o PYr = NP9 (P equals NP relative to oracle O,)
o P9 £ NPY2 (P does not equal NP relative to oracle O,)

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000000 e0000

The Relativization Barrier for Pvs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:
o PYr = NP9 (P equals NP relative to oracle O,)
o P9 £ NPY2 (P does not equal NP relative to oracle O,)

e Consequence: The P vs NP question cannot be resolved using
relativizing proof techniques alone.

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000000 e0000

The Relativization Barrier for Pvs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:
o PYr = NP9 (P equals NP relative to oracle O,)
o P9 £ NPY2 (P does not equal NP relative to oracle O,)

e Consequence: The P vs NP question cannot be resolved using
relativizing proof techniques alone.

e This creates a relativization barrier — any proof technique
that works equally well for all oracles cannot settle P vs NP.

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 e000

Constructing O such that PY = NpY

e Let
O ={(M,x,t) | M accepts input x in t steps}

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 e000

Constructing O such that PY = NpY

e Let
O ={(M,x,t) | M accepts input x in t steps}

e PY and NP? both equal to exponential time.

Constructing O such that PY £ NpY

Definition (the OR-language L°)

For an oracle O, let
L° == {1" | Ix €{o,1}"withO(x) =1}.

e 1Y € NPY: oninput1”, guess x € {0,1)" and query O(x);
accept iff the answer is 1.

Constructing O such that PY £ NpY

Definition (the OR-language L°)
For an oracle O, let
L° == {1" | Ix €{o,1}"withO(x) =1}.
e 1Y € NPY: oninput1”, guess x € {0,1)" and query O(x);
accept iff the answer is 1.

e Intuition: any P® machine on input 1" can ask only
polynomially many length-» oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

Constructing O such that PY £ NpY

Definition (the OR-language L°)

For an oracle O, let
L° == {1" | Ix €{o,1}"withO(x) =1}.
e 1Y € NPY: oninput1”, guess x € {0,1)" and query O(x);
accept iff the answer is 1.

e Intuition: any P® machine on input 1" can ask only

polynomially many length-» oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

e Proof: see the white board!

PROBLEM WITH NTIME HIERARCHY THEOREM
000000000000 000e0

Relativization Barrier and query complexity

e The point of the proof above is that any P° machine on input
1" can ask only polynomially query length-n oracle questions,
this is far from enough for solving OR of 2" bits.

e Query complexity: Given N = 2" bits and a function
f:{o,1}N — {o, 1}, the query complexity of { is the minimum
number of queries to f that a deterministic algorithm needs
to compute f on all inputs.

e What'’s the query complexity of OR? How about AND? MAJ?

e Query complexity lower bound implies the Relativization
Barrier.

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

e Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, and many other
important questions in complexity theory:

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

e Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, and many other
important questions in complexity theory:

o NPvs coNP

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

e Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, and many other
important questions in complexity theory:

o NPvs coNP
o Pvs PSPACE

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

e Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, and many other
important questions in complexity theory:

o NPvs coNP
o Pvs PSPACE
o Pvs BPP

PROBLEM WITH NTIME HIERARCHY THEOREM
0000000000000 000e

Summary for Time hierarchy theorems and
Relativization Barrier

e We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really

“open up” the computation enough, in the sense that the proof
relativizes.

e Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, and many other
important questions in complexity theory:

o NPvs coNP

o Pvs PSPACE
o Pvs BPP

o NEXPvs BPP

	Problem with ntime hierarchy theorem

