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Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven't covered in class. (More
details about the open direction projects coming next week.)

e You goal is very simple: pick a frontier complexity paper and
understand it.

e This may require reading some prior works.

e Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

e Some of the harder papers may require you to collaborate
with others.
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e Inthe prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

e For each of the proof, the idea is to construct a hard language
H such that, letting M, M,, .. ., M,, ... be an enumeration of
all Turing machines (for say DTIME[T(n)]), for every M; there
exists an input x; such that M;(x;) # H(x;).

e DTIME hierachy theorem: H((M;)) # M;({M;)), i.e., the
input x; is the encoding of M; itself.

e NTIME hierachy theorem: H(1") # M;(1") for some
t e [m;, 2f )],
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infinitey often and almost everywhere separation

e You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

e Infinite often separation (default): The language L is not in
NTIME[T (n)] if and only if for all L’ € NTIMEIT(n)], for
infinitely many input lengths n, L, # L,. (here, L, is the
language L on input length n.)

e Almost everywhere separation: For all L’ € NTIME[T(n)], for
all except finitely many n, L, # L/.

e Big open question: prove an almost everywhere separation
between NTIME [n?*] and NTIME[2"].
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Why is infinite often separation not enough?

e For the hard language H, suppose there is a NTIME[T(n)]
machine M such that H(x) = M(x) for all x of length n, except
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Why is infinite often separation not enough?

e For the hard language H, suppose there is a NTIME[T(n)]
machine M such that H(x) = M(x) for all x of length n, except

Zk
when n is of the form 2*° for some k € IN.
e This is allowed for infinite often separation (H can still be hard

for NTIME[T(n)]). But “practically”, H is easy for
NTIME[T(n)].
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An almost-everywhere deterministic time
hierarchy theorem

Theorem

o Thereisalanguage L € TIME[n*] such that forevery L' € TIME(n],
for all except finitely manyn, L, # L,.




PROBLEM WITH NTIME HIERARCHY THEOREM
00@00000000000000

An almost-everywhere deterministic time
hierarchy theorem

Theorem
o Thereisalanguage L € TIME[n*] such that forevery L' € TIME(n],
for all except finitely manyn, L, # L,.

e Same holds for NTIME[T (n) - log” T(n)] and NTIME[T (n)].




An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,




An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,

e Let

H = {{M), | M({M),) rejects in [(M),|"* steps,n > [(M)|}




PROBLEM WITH NTIME HIERARCHY THEOREM
000@0000000000000

An almost-everywhere deterministic time
hierarchy theorem

Proof

e paddable encoding: For simplicity, we assume that if a TM M
is encoded as a binary string (M), then (M)o' represents the
same machine M, for any t € IN. (i.e., we can pad the
encoding with any number of 0.) Let (M), = (M)o" (™I,

o Let
H = {{M), | M({M),) rejects in [(M),|"* steps,n > [(M)|}

e Canshow H € TIME[n?*] and, and it is almost-everywhere
separated from TIMEn].
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A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.
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A weaker a.e. ntime hierarchy theorem

Definition (Non-deterministic time with bounded guess)

e ForafunctionT,G:IN — IN, we define
NTIMEGUESS[T(n), G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in time O(T(n)) with making at most G(n)
non-deterministic guesses.

e Thatis, L € NTIMEGUESSIT(n), G(n)] if there exists a
non-deterministic multi-tape Turing machine M and a
constant ¢ such that:

o Mdecides L (i.e., M accepts x if and only if x € L)
o For all inputs x of length n, M halts within ¢ - T(n) steps and
makes at most G(n) non-deterministic guesses.
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A weaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theorem with

bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W (n)].
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A weaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theorem with
bounded guess)

o LetT,G,W: IN — N be time-constructible functions such that
G(n) = o(T(n)) and W(n) = o(n). Then thereis a language
L € NTIME(T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n), W (n)].

e Proof: see the white board!
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e Let O: {o,1}* — {o,1} be a function denoted as the oracle.
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e Let O: {o,1}* — {o,1} be a function denoted as the oracle.

e An O-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qguery and Gapswer-

e The machine can make oracle queries as follows:
o Write a string y on the oracle tape and enter state qgyery
o In the next step, the machine automatically transitions to state
Qanswer and the oracle tape contains O(y)
o This counts as a single computation step

e The running time includes all computation steps, including
oracle queries.
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Definition (Oracle complexity classes)

e For anoracle © and atime bound T : IN — IN, we define
DTIME® [T(n)] to be the class of languages that can be
decided by a deterministic O-oracle multi-tape Turing
machine in time O(T(n)).

e Thatis, L € DTIME®[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machine M and a constant ¢ such
that:

o MY decides L (i.e., M® accepts x if and only if x € L)

o For allinputs x of length n, M® halts within ¢ - T(n) steps

e Similarly, we can define NTIME® [T (n)] for non-deterministic
O-oracle Turing machines.
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Turing machine for O-oracle Turing machines.
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All previous results holds for all O-oracle Turing machines.

Theorem (Time hierarchy theorem for oracle Turing
machines)

e Forany oracle O, and any time-constructible functions t,, t, with
t.(n) logt,(n) = o(t,(n)), we have:

DTIME®[t,(n)] € DTIME®[t,(n)]

o Similarly, for any oracle O, and any time-constructible functions f, g
withf(n+ 1) = o(g(n)), we have:

NTIME® [f (n)] € NTIME® [g(n)]

To prove this, we only need to show the existence of a universal
Turing machine for O-oracle Turing machines.
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Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

e Forany oracle O, there exists a universal O-oracle Turing machine
U such that:
o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string
o UY((M,x)) = M®(x) (same output)
o IfM® runsin timet(n) on input x where x| = n, then U® vuns in time
O(t(n) logt(n)) oninput (M, x)
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Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle Turing Machine)

e Forany oracle O, there exists a universal O-oracle Turing machine
U such that:
o UY takes as input (M, x) where M is the description of an O-oracle
Turing machine and x is an input string
o UY((M,x)) = M®(x) (same output)
o IfM® runsin timet(n) on input x where x| = n, then U® vuns in time
O(t(n) logt(n)) oninput (M, x)

o The simulation overhead is the same as in the non-orvacle case, and
oracle queries are handled transparently.
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Relativization

e A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

e Ifatheorem T can be proven using only relativizing
techniques, then T? (the relativized version of T with oracle
O) holds for all oracles O.

e Conversely, if there exist oracles O, and O, such that T is
true but T9- is false, then T cannot be proven using
relativizing techniques alone.

e Example: The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracle O.
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Relativization

e Ifthe proof relativizes, it means the proof just does not “open
up” the computation enough.

e The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

e Alot of early results in complexity theory are relativizing.
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The Relativization Barrier for Pvs NP

e The Pvs NP question asks whether P = NP.

e Baker-Gill-Solovay Theorem (1975): There exist oracles O, and
O, such that:
o PYr = NP9 (P equals NP relative to oracle O,)
o P9 £ NPY2 (P does not equal NP relative to oracle O,)

e Consequence: The P vs NP question cannot be resolved using
relativizing proof techniques alone.

e This creates a relativization barrier — any proof technique
that works equally well for all oracles cannot settle P vs NP.
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Constructing O such that PY = NpY

e Let
O ={(M,x,t) | M accepts input x in t steps}

e PY and NP? both equal to exponential time.
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Definition (the OR-language L°)

For an oracle O, let
L° == {1" | Ix €{o,1}"withO(x) =1}.
e 1Y € NPY: oninput1”, guess x € {0,1)" and query O(x);
accept iff the answer is 1.

e Intuition: any P® machine on input 1" can ask only

polynomially many length-» oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

e Proof: see the white board!
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Relativization Barrier and query complexity

e The point of the proof above is that any P° machine on input
1" can ask only polynomially query length-n oracle questions,
this is far from enough for solving OR of 2" bits.

e Query complexity: Given N = 2" bits and a function
f:{o,1}N — {o, 1}, the query complexity of { is the minimum
number of queries to f that a deterministic algorithm needs
to compute f on all inputs.

e What'’s the query complexity of OR? How about AND? MAJ?

e Query complexity lower bound implies the Relativization
Barrier.
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