
Computational Complexity Theory
Fall 2025
Time complexity andHierarchy theorems: Part II
September 4, 2025

Lijie Chen
University of California, Berkeley
lijiechen@berkeley.edu

mailto:lijiechen@berkeley.edu

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Some Logistics

• OfficeHours: 2:00 - 3:00 PM, SODA 627, Tuesday

• Additional OfficeHours: 11:30 AM - 12:30 PM, SODA 627,
Thursday

• First HWout: Sept 5

• Some suggested projects (mostly survey) already out on the
coursewebsite

• Coursewebsite:
https://chen-lijie.github.io/cs278-complexity.html

• Course discord: https://discord.gg/U3965mgE2p

problem with ntime hierarchy theorem

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven’t covered in class. (More
details about the open direction projects coming next week.)

• You goal is very simple: pick a frontier complexity paper and
understand it.

• Thismay require reading some prior works.

• Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

• Some of the harder papers may require you to collaborate
with others.

problem with ntime hierarchy theorem

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven’t covered in class. (More
details about the open direction projects coming next week.)

• You goal is very simple: pick a frontier complexity paper and
understand it.

• Thismay require reading some prior works.

• Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

• Some of the harder papers may require you to collaborate
with others.

problem with ntime hierarchy theorem

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven’t covered in class. (More
details about the open direction projects coming next week.)

• You goal is very simple: pick a frontier complexity paper and
understand it.

• Thismay require reading some prior works.

• Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

• Some of the harder papers may require you to collaborate
with others.

problem with ntime hierarchy theorem

Suggested projects: Survey

One possible type of course project is a survey of a
complexity-related topic we haven’t covered in class. (More
details about the open direction projects coming next week.)

• You goal is very simple: pick a frontier complexity paper and
understand it.

• Thismay require reading some prior works.

• Your survey should set up right context for this paper, explains
the motivations, and give an overview of the main proof ideas.

• Some of the harder papers may require you to collaborate
with others.

problem with ntime hierarchy theorem

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

• In the prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

• For each of the proof, the idea is to construct a hard language
H such that, lettingM1,M2, . . . ,Mk, . . . be an enumeration of
all Turing machines (for say DTIME[T(n)]), for everyMi there
exists an input xi such thatMi(xi) ̸= H(xi).

• DTIME hierachy theorem: H(⟨Mi⟩) ̸= Mi(⟨Mi⟩), i.e., the
input xi is the encoding ofMi itself.

• NTIME hierachy theorem: H(1t) ̸= Mi(1t) for some
t ∈ [ni, 2f (ni)

2
].

problem with ntime hierarchy theorem

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

• In the prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

• For each of the proof, the idea is to construct a hard language
H such that, lettingM1,M2, . . . ,Mk, . . . be an enumeration of
all Turing machines (for say DTIME[T(n)]), for everyMi there
exists an input xi such thatMi(xi) ̸= H(xi).

• DTIME hierachy theorem: H(⟨Mi⟩) ̸= Mi(⟨Mi⟩), i.e., the
input xi is the encoding ofMi itself.

• NTIME hierachy theorem: H(1t) ̸= Mi(1t) for some
t ∈ [ni, 2f (ni)

2
].

problem with ntime hierarchy theorem

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

• In the prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

• For each of the proof, the idea is to construct a hard language
H such that, lettingM1,M2, . . . ,Mk, . . . be an enumeration of
all Turing machines (for say DTIME[T(n)]), for everyMi there
exists an input xi such thatMi(xi) ̸= H(xi).

• DTIME hierachy theorem: H(⟨Mi⟩) ̸= Mi(⟨Mi⟩), i.e., the
input xi is the encoding ofMi itself.

• NTIME hierachy theorem: H(1t) ̸= Mi(1t) for some
t ∈ [ni, 2f (ni)

2
].

problem with ntime hierarchy theorem

Recap: Time hierarchy theorem for deterministic
time and non-deterministic time

• In the prior lecture, we shown the determnistic time and
non-deterministic time hierarchy theorems.

• For each of the proof, the idea is to construct a hard language
H such that, lettingM1,M2, . . . ,Mk, . . . be an enumeration of
all Turing machines (for say DTIME[T(n)]), for everyMi there
exists an input xi such thatMi(xi) ̸= H(xi).

• DTIME hierachy theorem: H(⟨Mi⟩) ̸= Mi(⟨Mi⟩), i.e., the
input xi is the encoding ofMi itself.

• NTIME hierachy theorem: H(1t) ̸= Mi(1t) for some
t ∈ [ni, 2f (ni)

2
].

problem with ntime hierarchy theorem

infinitey often and almost everywhere separation

• You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

• Infinite often separation (default): The language L is not in
NTIME[T(n)] if and only if for all L ′ ∈ NTIME[T(n)], for
infinitelymany input lengths n, Ln ̸= L ′n. (here, Ln is the
language L on input length n.)

• Almost everywhere separation: For all L ′ ∈ NTIME[T(n)], for
all except finitelymany n, Ln ̸= L ′n.

• Big open question: prove an almost everywhere separation
between NTIME[n2] and NTIME[2n].

problem with ntime hierarchy theorem

infinitey often and almost everywhere separation

• You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

• Infinite often separation (default): The language L is not in
NTIME[T(n)] if and only if for all L ′ ∈ NTIME[T(n)], for
infinitelymany input lengths n, Ln ̸= L ′n. (here, Ln is the
language L on input length n.)

• Almost everywhere separation: For all L ′ ∈ NTIME[T(n)], for
all except finitelymany n, Ln ̸= L ′n.

• Big open question: prove an almost everywhere separation
between NTIME[n2] and NTIME[2n].

problem with ntime hierarchy theorem

infinitey often and almost everywhere separation

• You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

• Infinite often separation (default): The language L is not in
NTIME[T(n)] if and only if for all L ′ ∈ NTIME[T(n)], for
infinitelymany input lengths n, Ln ̸= L ′n. (here, Ln is the
language L on input length n.)

• Almost everywhere separation: For all L ′ ∈ NTIME[T(n)], for
all except finitelymany n, Ln ̸= L ′n.

• Big open question: prove an almost everywhere separation
between NTIME[n2] and NTIME[2n].

problem with ntime hierarchy theorem

infinitey often and almost everywhere separation

• You can always adding dummy states to a Turing machine
(think of “adding comments” to Python code), every machine
M appears in the enumeration infinitely many times.

• Infinite often separation (default): The language L is not in
NTIME[T(n)] if and only if for all L ′ ∈ NTIME[T(n)], for
infinitelymany input lengths n, Ln ̸= L ′n. (here, Ln is the
language L on input length n.)

• Almost everywhere separation: For all L ′ ∈ NTIME[T(n)], for
all except finitelymany n, Ln ̸= L ′n.

• Big open question: prove an almost everywhere separation
between NTIME[n2] and NTIME[2n].

problem with ntime hierarchy theorem

Why is infinite often separation not enough?

• For the hard languageH, suppose there is a NTIME[T(n)]
machineM such thatH(x) = M(x) for all x of length n, except

when n is of the form 222
2k

for some k ∈N.

• This is allowed for infinite often separation (H can still be hard
for NTIME[T(n)]). But “practically”,H is easy for
NTIME[T(n)].

problem with ntime hierarchy theorem

Why is infinite often separation not enough?

• For the hard languageH, suppose there is a NTIME[T(n)]
machineM such thatH(x) = M(x) for all x of length n, except

when n is of the form 222
2k

for some k ∈N.

• This is allowed for infinite often separation (H can still be hard
for NTIME[T(n)]). But “practically”,H is easy for
NTIME[T(n)].

problem with ntime hierarchy theorem

An almost-everywhere deterministic time
hierarchy theorem

Theorem
• There is a language L ∈ TIME[n2] such that for every L ′ ∈ TIME[n],
for all except finitely many n, Ln ̸= L ′n.

• Same holds for NTIME[T(n) · log2 T(n)] andNTIME[T(n)].

problem with ntime hierarchy theorem

An almost-everywhere deterministic time
hierarchy theorem

Theorem
• There is a language L ∈ TIME[n2] such that for every L ′ ∈ TIME[n],
for all except finitely many n, Ln ̸= L ′n.

• Same holds for NTIME[T(n) · log2 T(n)] andNTIME[T(n)].

problem with ntime hierarchy theorem

An almost-everywhere deterministic time
hierarchy theorem

Proof
• paddable encoding: For simplicity, we assume that if a TMM
is encoded as a binary string ⟨M⟩, then ⟨M⟩0t represents the
samemachineM, for any t ∈N. (i.e., we can pad the
encoding with any number of 0.) Let ⟨M⟩n = ⟨M⟩0n−|⟨M⟩|.

• Let

H = {⟨M⟩n | M(⟨M⟩n) rejects in |⟨M⟩n|1.5 steps, n ⩾ |⟨M⟩|}

• Can showH ∈ TIME[n2] and, and it is almost-everywhere
separated from TIME[n].

problem with ntime hierarchy theorem

An almost-everywhere deterministic time
hierarchy theorem

Proof
• paddable encoding: For simplicity, we assume that if a TMM
is encoded as a binary string ⟨M⟩, then ⟨M⟩0t represents the
samemachineM, for any t ∈N. (i.e., we can pad the
encoding with any number of 0.) Let ⟨M⟩n = ⟨M⟩0n−|⟨M⟩|.

• Let

H = {⟨M⟩n | M(⟨M⟩n) rejects in |⟨M⟩n|1.5 steps, n ⩾ |⟨M⟩|}

• Can showH ∈ TIME[n2] and, and it is almost-everywhere
separated from TIME[n].

problem with ntime hierarchy theorem

An almost-everywhere deterministic time
hierarchy theorem

Proof
• paddable encoding: For simplicity, we assume that if a TMM
is encoded as a binary string ⟨M⟩, then ⟨M⟩0t represents the
samemachineM, for any t ∈N. (i.e., we can pad the
encoding with any number of 0.) Let ⟨M⟩n = ⟨M⟩0n−|⟨M⟩|.

• Let

H = {⟨M⟩n | M(⟨M⟩n) rejects in |⟨M⟩n|1.5 steps, n ⩾ |⟨M⟩|}

• Can showH ∈ TIME[n2] and, and it is almost-everywhere
separated from TIME[n].

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Definition (Non-deterministic timewith bounded guess)
• For a function T,G :N →N, we define
NTIMEGUESS[T(n),G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in timeO(T(n))with making at most G(n)
non-deterministic guesses.

• That is, L ∈ NTIMEGUESS[T(n),G(n)] if there exists a
non-deterministic multi-tape Turing machineM and a
constant c such that:

◦ M decides L (i.e.,M accepts x if and only if x ∈ L)
◦ For all inputs x of length n,M halts within c · T(n) steps and
makes at most G(n) non-deterministic guesses.

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Definition (Non-deterministic timewith bounded guess)
• For a function T,G :N →N, we define
NTIMEGUESS[T(n),G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in timeO(T(n))with making at most G(n)
non-deterministic guesses.

• That is, L ∈ NTIMEGUESS[T(n),G(n)] if there exists a
non-deterministic multi-tape Turing machineM and a
constant c such that:

◦ M decides L (i.e.,M accepts x if and only if x ∈ L)
◦ For all inputs x of length n,M halts within c · T(n) steps and
makes at most G(n) non-deterministic guesses.

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Definition (Non-deterministic timewith bounded guess)
• For a function T,G :N →N, we define
NTIMEGUESS[T(n),G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in timeO(T(n))with making at most G(n)
non-deterministic guesses.

• That is, L ∈ NTIMEGUESS[T(n),G(n)] if there exists a
non-deterministic multi-tape Turing machineM and a
constant c such that:

◦ M decides L (i.e.,M accepts x if and only if x ∈ L)

◦ For all inputs x of length n,M halts within c · T(n) steps and
makes at most G(n) non-deterministic guesses.

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Definition (Non-deterministic timewith bounded guess)
• For a function T,G :N →N, we define
NTIMEGUESS[T(n),G(n)] to be the class of languages that
can be decided by a non-deterministic multi-tape Turing
machine in timeO(T(n))with making at most G(n)
non-deterministic guesses.

• That is, L ∈ NTIMEGUESS[T(n),G(n)] if there exists a
non-deterministic multi-tape Turing machineM and a
constant c such that:

◦ M decides L (i.e.,M accepts x if and only if x ∈ L)
◦ For all inputs x of length n,M halts within c · T(n) steps and
makes at most G(n) non-deterministic guesses.

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theoremwith
bounded guess)
• Let T,G,W : N →N be time-constructible functions such that
G(n) = o(T(n)) andW(n) = o(n). Then there is a language
L ∈ NTIME[T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n),W(n)].

• Proof: see the white board!

problem with ntime hierarchy theorem

Aweaker a.e. ntime hierarchy theorem

Theorem (Non-deterministic time hierarchy theoremwith
bounded guess)
• Let T,G,W : N →N be time-constructible functions such that
G(n) = o(T(n)) andW(n) = o(n). Then there is a language
L ∈ NTIME[T(n)] but L is almost-everywhere separated from
NTIMEGUESS[G(n),W(n)].

• Proof: see the white board!

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:

◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:

◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:

◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:
◦ Write a string y on the oracle tape and enter state qquery

◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:
◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:
◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracles and relativization
Definition (Oracle TuringMachine)
• LetO : {0, 1}∗ → {0, 1} be a function denoted as the oracle.

• AnO-oracle multi-tape Turing machine is a multi-tape
Turing machine with an additional oracle tape and two
special states qquery and qanswer.

• Themachine canmake oracle queries as follows:
◦ Write a string y on the oracle tape and enter state qquery
◦ In the next step, the machine automatically transitions to state
qanswer and the oracle tape containsO(y)

◦ This counts as a single computation step

• The running time includes all computation steps, including
oracle queries.

problem with ntime hierarchy theorem

Oracle complexity classes
Definition (Oracle complexity classes)
• For an oracleO and a time bound T :N →N, we define
DTIMEO[T(n)] to be the class of languages that can be
decided by a deterministicO-oracle multi-tape Turing
machine in timeO(T(n)).

• That is, L ∈ DTIMEO[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machineM and a constant c such
that:

◦ MO decides L (i.e.,MO accepts x if and only if x ∈ L)
◦ For all inputs x of length n,MO halts within c · T(n) steps

• Similarly, we can define NTIMEO[T(n)] for non-deterministic
O-oracle Turing machines.

problem with ntime hierarchy theorem

Oracle complexity classes
Definition (Oracle complexity classes)
• For an oracleO and a time bound T :N →N, we define
DTIMEO[T(n)] to be the class of languages that can be
decided by a deterministicO-oracle multi-tape Turing
machine in timeO(T(n)).

• That is, L ∈ DTIMEO[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machineM and a constant c such
that:

◦ MO decides L (i.e.,MO accepts x if and only if x ∈ L)
◦ For all inputs x of length n,MO halts within c · T(n) steps

• Similarly, we can define NTIMEO[T(n)] for non-deterministic
O-oracle Turing machines.

problem with ntime hierarchy theorem

Oracle complexity classes
Definition (Oracle complexity classes)
• For an oracleO and a time bound T :N →N, we define
DTIMEO[T(n)] to be the class of languages that can be
decided by a deterministicO-oracle multi-tape Turing
machine in timeO(T(n)).

• That is, L ∈ DTIMEO[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machineM and a constant c such
that:

◦ MO decides L (i.e.,MO accepts x if and only if x ∈ L)

◦ For all inputs x of length n,MO halts within c · T(n) steps

• Similarly, we can define NTIMEO[T(n)] for non-deterministic
O-oracle Turing machines.

problem with ntime hierarchy theorem

Oracle complexity classes
Definition (Oracle complexity classes)
• For an oracleO and a time bound T :N →N, we define
DTIMEO[T(n)] to be the class of languages that can be
decided by a deterministicO-oracle multi-tape Turing
machine in timeO(T(n)).

• That is, L ∈ DTIMEO[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machineM and a constant c such
that:

◦ MO decides L (i.e.,MO accepts x if and only if x ∈ L)
◦ For all inputs x of length n,MO halts within c · T(n) steps

• Similarly, we can define NTIMEO[T(n)] for non-deterministic
O-oracle Turing machines.

problem with ntime hierarchy theorem

Oracle complexity classes
Definition (Oracle complexity classes)
• For an oracleO and a time bound T :N →N, we define
DTIMEO[T(n)] to be the class of languages that can be
decided by a deterministicO-oracle multi-tape Turing
machine in timeO(T(n)).

• That is, L ∈ DTIMEO[T(n)] if there exists a deterministic
O-oracle multi-tape Turing machineM and a constant c such
that:

◦ MO decides L (i.e.,MO accepts x if and only if x ∈ L)
◦ For all inputs x of length n,MO halts within c · T(n) steps

• Similarly, we can define NTIMEO[T(n)] for non-deterministic
O-oracle Turing machines.

problem with ntime hierarchy theorem

Oracles and relativization
All previous results holds for allO-oracle Turing machines.

Theorem (Time hierarchy theorem for oracle Turing
machines)
• For any oracleO, and any time-constructible functions t1, t2 with
t1(n) log t1(n) = o(t2(n)), we have:

DTIMEO[t1(n)] ⊊ DTIMEO[t2(n)]

• Similarly, for any oracleO, and any time-constructible functions f , g
with f (n+ 1) = o(g(n)), we have:

NTIMEO[f (n)] ⊊ NTIMEO[g(n)]

To prove this, we only need to show the existence of a universal
Turing machine forO-oracle Turing machines.

problem with ntime hierarchy theorem

Oracles and relativization
All previous results holds for allO-oracle Turing machines.

Theorem (Time hierarchy theorem for oracle Turing
machines)
• For any oracleO, and any time-constructible functions t1, t2 with
t1(n) log t1(n) = o(t2(n)), we have:

DTIMEO[t1(n)] ⊊ DTIMEO[t2(n)]

• Similarly, for any oracleO, and any time-constructible functions f , g
with f (n+ 1) = o(g(n)), we have:

NTIMEO[f (n)] ⊊ NTIMEO[g(n)]

To prove this, we only need to show the existence of a universal
Turing machine forO-oracle Turing machines.

problem with ntime hierarchy theorem

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle TuringMachine)
• For any oracleO, there exists a universalO-oracle Turingmachine
UO such that:

◦ UO takes as input ⟨M, x⟩whereM is the description of anO-oracle
Turingmachine and x is an input string

◦ UO(⟨M, x⟩) = MO(x) (same output)
◦ If MO runs in time t(n) on input x where |x| = n, then UO runs in time
O(t(n) log t(n)) on input ⟨M, x⟩

• The simulation overhead is the same as in the non-oracle case, and
oracle queries are handled transparently.

problem with ntime hierarchy theorem

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle TuringMachine)
• For any oracleO, there exists a universalO-oracle Turingmachine
UO such that:
◦ UO takes as input ⟨M, x⟩whereM is the description of anO-oracle
Turingmachine and x is an input string

◦ UO(⟨M, x⟩) = MO(x) (same output)
◦ If MO runs in time t(n) on input x where |x| = n, then UO runs in time
O(t(n) log t(n)) on input ⟨M, x⟩

• The simulation overhead is the same as in the non-oracle case, and
oracle queries are handled transparently.

problem with ntime hierarchy theorem

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle TuringMachine)
• For any oracleO, there exists a universalO-oracle Turingmachine
UO such that:
◦ UO takes as input ⟨M, x⟩whereM is the description of anO-oracle
Turingmachine and x is an input string

◦ UO(⟨M, x⟩) = MO(x) (same output)

◦ If MO runs in time t(n) on input x where |x| = n, then UO runs in time
O(t(n) log t(n)) on input ⟨M, x⟩

• The simulation overhead is the same as in the non-oracle case, and
oracle queries are handled transparently.

problem with ntime hierarchy theorem

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle TuringMachine)
• For any oracleO, there exists a universalO-oracle Turingmachine
UO such that:
◦ UO takes as input ⟨M, x⟩whereM is the description of anO-oracle
Turingmachine and x is an input string

◦ UO(⟨M, x⟩) = MO(x) (same output)
◦ If MO runs in time t(n) on input x where |x| = n, then UO runs in time
O(t(n) log t(n)) on input ⟨M, x⟩

• The simulation overhead is the same as in the non-oracle case, and
oracle queries are handled transparently.

problem with ntime hierarchy theorem

Time hierarchy theorem for oracle Turing
machines

Theorem (Universal Oracle TuringMachine)
• For any oracleO, there exists a universalO-oracle Turingmachine
UO such that:
◦ UO takes as input ⟨M, x⟩whereM is the description of anO-oracle
Turingmachine and x is an input string

◦ UO(⟨M, x⟩) = MO(x) (same output)
◦ If MO runs in time t(n) on input x where |x| = n, then UO runs in time
O(t(n) log t(n)) on input ⟨M, x⟩

• The simulation overhead is the same as in the non-oracle case, and
oracle queries are handled transparently.

problem with ntime hierarchy theorem

Relativization

• A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

• If a theorem T can be proven using only relativizing
techniques, then TO (the relativized version of T with oracle
O) holds for all oraclesO.

• Conversely, if there exist oraclesO1 andO2 such that TO1 is
true but TO2 is false, then T cannot be proven using
relativizing techniques alone.

• Example:The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracleO.

problem with ntime hierarchy theorem

Relativization

• A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

• If a theorem T can be proven using only relativizing
techniques, then TO (the relativized version of T with oracle
O) holds for all oraclesO.

• Conversely, if there exist oraclesO1 andO2 such that TO1 is
true but TO2 is false, then T cannot be proven using
relativizing techniques alone.

• Example:The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracleO.

problem with ntime hierarchy theorem

Relativization

• A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

• If a theorem T can be proven using only relativizing
techniques, then TO (the relativized version of T with oracle
O) holds for all oraclesO.

• Conversely, if there exist oraclesO1 andO2 such that TO1 is
true but TO2 is false, then T cannot be proven using
relativizing techniques alone.

• Example:The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracleO.

problem with ntime hierarchy theorem

Relativization

• A relativizing proof technique is one that applies equally well
to all oracle Turing machines, regardless of the oracle.

• If a theorem T can be proven using only relativizing
techniques, then TO (the relativized version of T with oracle
O) holds for all oraclesO.

• Conversely, if there exist oraclesO1 andO2 such that TO1 is
true but TO2 is false, then T cannot be proven using
relativizing techniques alone.

• Example:The time hierarchy theorems (deterministic and
non-deterministic) relativize because their proofs work for
any oracleO.

problem with ntime hierarchy theorem

Relativization

• If the proof relativizes, it means the proof just does not “open
up” the computation enough.

• The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

• A lot of early results in complexity theory are relativizing.

problem with ntime hierarchy theorem

Relativization

• If the proof relativizes, it means the proof just does not “open
up” the computation enough.

• The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

• A lot of early results in complexity theory are relativizing.

problem with ntime hierarchy theorem

Relativization

• If the proof relativizes, it means the proof just does not “open
up” the computation enough.

• The time hierarchy theorems relativize because their proofs is
“just” some simulation-based proof, which does not really try
to “analyze” the computation.

• A lot of early results in complexity theory are relativizing.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:

◦ PO1 = NPO1 (P equals NP relative to oracleO1)
◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:

◦ PO1 = NPO1 (P equals NP relative to oracleO1)
◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:
◦ PO1 = NPO1 (P equals NP relative to oracleO1)

◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:
◦ PO1 = NPO1 (P equals NP relative to oracleO1)
◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:
◦ PO1 = NPO1 (P equals NP relative to oracleO1)
◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

TheRelativization Barrier for P vs NP

• The P vs NP question asks whether P = NP.

• Baker-Gill-SolovayTheorem (1975):There exist oraclesO1 and
O2 such that:
◦ PO1 = NPO1 (P equals NP relative to oracleO1)
◦ PO2 ̸= NPO2 (P does not equal NP relative to oracleO2)

• Consequence:The P vs NP question cannot be resolved using
relativizing proof techniques alone.

• This creates a relativization barrier—any proof technique
that works equally well for all oracles cannot settle P vs NP.

problem with ntime hierarchy theorem

ConstructingO such that PO = NPO

• Let
O = {⟨M, x, t⟩ | M accepts input x in t steps}

• PO and NPO both equal to exponential time.

problem with ntime hierarchy theorem

ConstructingO such that PO = NPO

• Let
O = {⟨M, x, t⟩ | M accepts input x in t steps}

• PO and NPO both equal to exponential time.

problem with ntime hierarchy theorem

ConstructingO such that PO ̸= NPO

Definition (the OR-language LO)
For an oracleO, let

LO := { 1n | ∃x ∈ {0, 1}n withO(x) = 1 }.

• LO ∈ NPO: on input 1n, guess x ∈ {0, 1}n and query O(x);
accept iff the answer is 1.

• Intuition: any POmachine on input 1n can ask only
polynomiallymany length-n oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

• Proof: see the white board!

problem with ntime hierarchy theorem

ConstructingO such that PO ̸= NPO

Definition (the OR-language LO)
For an oracleO, let

LO := { 1n | ∃x ∈ {0, 1}n withO(x) = 1 }.

• LO ∈ NPO: on input 1n, guess x ∈ {0, 1}n and query O(x);
accept iff the answer is 1.

• Intuition: any POmachine on input 1n can ask only
polynomiallymany length-n oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

• Proof: see the white board!

problem with ntime hierarchy theorem

ConstructingO such that PO ̸= NPO

Definition (the OR-language LO)
For an oracleO, let

LO := { 1n | ∃x ∈ {0, 1}n withO(x) = 1 }.

• LO ∈ NPO: on input 1n, guess x ∈ {0, 1}n and query O(x);
accept iff the answer is 1.

• Intuition: any POmachine on input 1n can ask only
polynomiallymany length-n oracle questions, not enough to
find a hidden x s.t. O(x) = 1.

• Proof: see the white board!

problem with ntime hierarchy theorem

Relativization Barrier and query complexity

• The point of the proof above is that any POmachine on input
1n can ask only polynomially query length-n oracle questions,
this is far from enough for solving OR of 2n bits.

• Query complexity: GivenN = 2n bits and a function
f : {0, 1}N → {0, 1}, the query complexity of f is the minimum
number of queries to f that a deterministic algorithm needs
to compute f on all inputs.

• What’s the query complexity of OR? How about AND? MAJ?

• Query complexity lower bound implies the Relativization
Barrier.

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:

◦ NP vs coNP
◦ P vs PSPACE
◦ P vs BPP
◦ NEXP vs BPP

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:

◦ NP vs coNP
◦ P vs PSPACE
◦ P vs BPP
◦ NEXP vs BPP

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:
◦ NP vs coNP

◦ P vs PSPACE
◦ P vs BPP
◦ NEXP vs BPP

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:
◦ NP vs coNP
◦ P vs PSPACE

◦ P vs BPP
◦ NEXP vs BPP

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:
◦ NP vs coNP
◦ P vs PSPACE
◦ P vs BPP

◦ NEXP vs BPP

problem with ntime hierarchy theorem

Summary for Time hierarchy theorems and
Relativization Barrier

• We have seen several hierarchy theorems, they are all proved
using “simulation” argument, such argument does not really
“open up” the computation enough, in the sense that the proof
relativizes.

• Relativization Barrier: any proof technique that works equally
well for all oracles cannot settle P vs NP, andmany other
important questions in complexity theory:
◦ NP vs coNP
◦ P vs PSPACE
◦ P vs BPP
◦ NEXP vs BPP

	Problem with ntime hierarchy theorem

