
Computational Complexity Theory
Fall 2025
Time-space lower bounds for SAT
September 9, 2025

Lijie Chen
University of California, Berkeley
lijiechen@berkeley.edu

mailto:lijiechen@berkeley.edu

Motivation: Hardness for NP

• SAT: the canonical NP-complete problem.

• The onemillion dollar question: Is there a polynomial time
algorithm for SAT?

• This is way too hard apparently (e.g., the relativization
barrier), can we prove something weaker first?

• This lecture: one of the strongest hardness results for SAT we
know.

• Bonus: the proof crucially uses Time hierarchy theorem!

Recap: Multi-tape TuringMachineModel

Definition (Multi-tape TuringMachine)
• Amulti-tape Turing machine has k tapes for some constant k.

• Each tape has its own read/write head.

• The input is initially written on the first tape (input tape).

• Themachine can read/write symbols andmove heads
independently on each tape.

• One step of computation allows the machine to:
◦ Read the current symbols under all heads
◦ Write new symbols on all tapes
◦ Move each head left, right, or keep it stationary
◦ Change the internal state

Recap: Multi-tape TuringMachineModel

Definition (Multi-tape TuringMachine)
• Amulti-tape Turing machine has k tapes for some constant k.

• Each tape has its own read/write head.

• The input is initially written on the first tape (input tape).

• Themachine can read/write symbols andmove heads
independently on each tape.

• One step of computation allows the machine to:
◦ Read the current symbols under all heads
◦ Write new symbols on all tapes
◦ Move each head left, right, or keep it stationary
◦ Change the internal state

Recap: Multi-tape TuringMachineModel

Definition (Multi-tape TuringMachine)
• Amulti-tape Turing machine has k tapes for some constant k.

• Each tape has its own read/write head.

• The input is initially written on the first tape (input tape).

• Themachine can read/write symbols andmove heads
independently on each tape.

• One step of computation allows the machine to:
◦ Read the current symbols under all heads
◦ Write new symbols on all tapes
◦ Move each head left, right, or keep it stationary
◦ Change the internal state

Recap: Multi-tape TuringMachineModel

Definition (Multi-tape TuringMachine)
• Amulti-tape Turing machine has k tapes for some constant k.

• Each tape has its own read/write head.

• The input is initially written on the first tape (input tape).

• Themachine can read/write symbols andmove heads
independently on each tape.

• One step of computation allows the machine to:
◦ Read the current symbols under all heads
◦ Write new symbols on all tapes
◦ Move each head left, right, or keep it stationary
◦ Change the internal state

Recap: Multi-tape TuringMachineModel

Definition (Multi-tape TuringMachine)
• Amulti-tape Turing machine has k tapes for some constant k.

• Each tape has its own read/write head.

• The input is initially written on the first tape (input tape).

• Themachine can read/write symbols andmove heads
independently on each tape.

• One step of computation allows the machine to:
◦ Read the current symbols under all heads
◦ Write new symbols on all tapes
◦ Move each head left, right, or keep it stationary
◦ Change the internal state

Space-Bounded Computation

Definition (Space complexity)
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the maximum number of tape cells
visited by any head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.

Space-Bounded Computation

Definition (Space complexity)
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the maximum number of tape cells
visited by any head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.

Space-Bounded Computation

Definition (Space complexity)
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the maximum number of tape cells
visited by any head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.

Space-Bounded Computation

Definition (Space complexity)
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the maximum number of tape cells
visited by any head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.

Space-Bounded Computation

Definition (Space complexity)
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the maximum number of tape cells
visited by any head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.

Space Complexity Classes

Definition (Deterministic space classes)
• DSPACE[S(n)] is the class of languages decidable by a
deterministic multi-tape Turing machine usingO(S(n))
space.

• TIMESPACE[T(n), S(n)] (i.e., TISP[T(n), S(n)]) is the class of
languages decidable by a deterministic multi-tape Turing
machine usingO(T(n)) time andO(S(n)) space.

Space Complexity Classes

Definition (Deterministic space classes)
• DSPACE[S(n)] is the class of languages decidable by a
deterministic multi-tape Turing machine usingO(S(n))
space.

• TIMESPACE[T(n), S(n)] (i.e., TISP[T(n), S(n)]) is the class of
languages decidable by a deterministic multi-tape Turing
machine usingO(T(n)) time andO(S(n)) space.

Motivation: Hardness for NP, Continued

• “SAT ∈ P?” is way too hard apparently (e.g., the relativization
barrier), can we prove something weaker first?

• A simpler question: Is there a polynomial time algorithm for
SAT that uses very little space? (say, is
SAT ∈ TISP[nO(1), n0.01]?)

• This lecture: SAT is not in TISP[nϕ−ϵ, nϵ] for
ϕ = 1+

√
5

2 ≈ 1.618 and very small ϵ > 0!

• More precisely, we will prove the following:

Theorem
NTIME[n] ̸⊆ TISP[nϕ−ϵ, nϵ] forϕ = 1+

√
5

2 ≈ 1.618 and very small
ϵ > 0.

An alternative definition of NTIME[T(n)]
Instead of using a non-deterministic Turing machine, we can
define NTIME[T(n)] using a deterministic Turing machine with
witness.

Definition (Alternative definition of NTIME[T(n))
] A language L ∈ NTIME[T(n)] if and only if there exists a
deterministic Turing machineM and a constant c such that:
• For every x ∈ L, there exists a witness wwith |w| ⩽ c · T(|x|)
such thatM(x,w) accepts in time c · T(|x|).

• For every x /∈ L, for all strings wwith |w| ⩽ c · T(|x|),M(x,w)
rejects in time c · T(|x|).

• This is equivalent to the standard definition using
non-deterministic Turing machines. The witness w
corresponds to the sequence of non-deterministic choices.

An alternative definition of NTIME[T(n)]
Instead of using a non-deterministic Turing machine, we can
define NTIME[T(n)] using a deterministic Turing machine with
witness.

Definition (Alternative definition of NTIME[T(n))
] A language L ∈ NTIME[T(n)] if and only if there exists a
deterministic Turing machineM and a constant c such that:
• For every x ∈ L, there exists a witness wwith |w| ⩽ c · T(|x|)
such thatM(x,w) accepts in time c · T(|x|).

• For every x /∈ L, for all strings wwith |w| ⩽ c · T(|x|),M(x,w)
rejects in time c · T(|x|).

• This is equivalent to the standard definition using
non-deterministic Turing machines. The witness w
corresponds to the sequence of non-deterministic choices.

An alternative definition of NTIME[T(n)]
Instead of using a non-deterministic Turing machine, we can
define NTIME[T(n)] using a deterministic Turing machine with
witness.

Definition (Alternative definition of NTIME[T(n))
] A language L ∈ NTIME[T(n)] if and only if there exists a
deterministic Turing machineM and a constant c such that:
• For every x ∈ L, there exists a witness wwith |w| ⩽ c · T(|x|)
such thatM(x,w) accepts in time c · T(|x|).

• For every x /∈ L, for all strings wwith |w| ⩽ c · T(|x|),M(x,w)
rejects in time c · T(|x|).

• This is equivalent to the standard definition using
non-deterministic Turing machines. The witness w
corresponds to the sequence of non-deterministic choices.

Definition: Σ2TIME[T(n)] andΠ2TIME[T(n)]

Definition
A language L ∈ Σ2TIME[T(n)] if and only if there exists a
deterministic Turing machineM and a constant c such that:
• For every x ∈ L, there exists a witness w1 with |w1| ⩽ c · T(|x|)
such that for all strings w2 with |w2| ⩽ c · T(|x|),M(x,w1,w2)
accepts in time c · T(|x|).

• For every x /∈ L, for all strings w1 with |w1| ⩽ c · T(|x|), there
exists a witness w2 with |w2| ⩽ c · T(|x|) such thatM(x,w1,w2)
rejects in time c · T(|x|).

Definition: Σ2TIME[T(n)] andΠ2TIME[T(n)]

Definition
A language L ∈ Π2TIME[T(n)] if and only if there exists a
deterministic Turing machineM and a constant c such that:
• For every x ∈ L, for all strings w1 with |w1| ⩽ c · T(|x|), there
exists a witness w2 with |w2| ⩽ c · T(|x|) such thatM(x,w1,w2)
accepts in time c · T(|x|).

• For every x /∈ L, there exists a witness w1 with |w1| ⩽ c · T(|x|)
such that for all strings w2 with |w2| ⩽ c · T(|x|),M(x,w1,w2)
rejects in time c · T(|x|).

TheSpeedup Lemma
DTS[nc] = TISP[nc, no(1)].

Lemma (Speedup Lemma)
DTS[nd] ⊆ (∃nx)(∀ log n)DTS[nd−x].
DTS[nd] ⊆ (∀nx)(∃ log n)DTS[nd−x].

Definition
A language L ∈ (∃f (n))(∀g(n))DTS[nk] if there is an no(1) space
machineM such that for all x ∈ {0, 1}n,
• x ∈ L if and only if there exists a witness wwith
|w| = f (n)1+o(1) such that for every ywith |y| = g(n)1+o(1),
M(x,w, y) accepts in nk+o(1) time.

Proof of the Speedup Lemma: see the white board!

TheSlowdown Lemma

DTS[nc] = TISP[nc, no(1)].

Lemma (Slowdown Lemma)
If NTIME[n] ⊆ DTS[nc], thenΣ2TIME[nd] ⊆ NTIME[nd·c+o(1)].

Proof: see the white board!

ThePadding Lemma

Lemma (Padding Lemma)
If NTIME[n] ⊆ DTS[nc], then NTIME[nd] ⊆ DTS[nd·c].

Proof: see the white board!

Warmup: The
√
2 Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[n

√
2−ϵ] for any ϵ > 0.

• Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[n
√
2−ϵ], we will deduce

NTIME[n2] ⊆ NTIME[n2−ϵ ′
], ϵ ′ > 0, contradiction to the

NTIME hierarchy theorem!

• Proof: see the white board!

Warmup: The
√
2 Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[n

√
2−ϵ] for any ϵ > 0.

• Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[n
√
2−ϵ], we will deduce

NTIME[n2] ⊆ NTIME[n2−ϵ ′
], ϵ ′ > 0, contradiction to the

NTIME hierarchy theorem!

• Proof: see the white board!

Warmup: The
√
2 Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[n

√
2−ϵ] for any ϵ > 0.

• Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[n
√
2−ϵ], we will deduce

NTIME[n2] ⊆ NTIME[n2−ϵ ′
], ϵ ′ > 0, contradiction to the

NTIME hierarchy theorem!

• Proof: see the white board!

Warmup: The
√
2 Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[n

√
2−ϵ] for any ϵ > 0.

• Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[n
√
2−ϵ], we will deduce

NTIME[n2] ⊆ NTIME[n2−ϵ ′
], ϵ ′ > 0, contradiction to the

NTIME hierarchy theorem!

• Proof: see the white board!

Main theorem: Theϕ Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2 ≈ 1.618.

• Again, Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[nϕ−ϵ], we will deduce
Σ2TIME[na] ⊆ Π2TIME[nb] for some a > b > 1, this is also a
contradiction.

Lemma
Σ2TIME[na] ̸⊆ Π2TIME[nb] for any a > b > 1.

Main theorem: Theϕ Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2 ≈ 1.618.

• Again, Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[nϕ−ϵ], we will deduce
Σ2TIME[na] ⊆ Π2TIME[nb] for some a > b > 1, this is also a
contradiction.

Lemma
Σ2TIME[na] ̸⊆ Π2TIME[nb] for any a > b > 1.

Main theorem: Theϕ Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2 ≈ 1.618.

• Again, Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[nϕ−ϵ], we will deduce
Σ2TIME[na] ⊆ Π2TIME[nb] for some a > b > 1, this is also a
contradiction.

Lemma
Σ2TIME[na] ̸⊆ Π2TIME[nb] for any a > b > 1.

Main theorem: Theϕ Lower Bound
Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2 ≈ 1.618.

Key lemma:

Lemma
For all k ⩾ 0, if NTIME[n] ⊆ DTS[nc], then

DTS
[
n2+

∑k
i=1 ci

]
⊆ Σ2TIME

[
nc

k+o(1)
]

and
DTS

[
n2+

∑k
i=1 ci

]
⊆ Π2TIME

[
nc

k+o(1)
]

Proof: see the white board!

