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Motivation: Hardness for NP

e SAT: the canonical NP-complete problem.

e The one million dollar question: Is there a polynomial time
algorithm for SAT?

e This is way too hard apparently (e.g., the relativization
barrier), can we prove something weaker first?

e This lecture: one of the strongest hardness results for SAT we
know.

e Bonus: the proof crucially uses Time hierarchy theorem!
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Recap: Multi-tape Turing Machine Model

Definition (Multi-tape Turing Machine)

e A multi-tape Turing machine has k tapes for some constant k.
e Each tape has its own read/write head.

e The input is initially written on the first tape (input tape).

e The machine can read/write symbols and move heads
independently on each tape.

e One step of computation allows the machine to:
o Read the current symbols under all heads
o Write new symbols on all tapes
o Move each head left, right, or keep it stationary
o Change the internal state
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Space-Bounded Computation

Definition (Space complexity)

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the maximum number of tape cells
visited by any head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only and does not count towards space
usage.

e There is a designated output tape which is write-only and
does not count towards space usage.

e Only the work tapes count towards space complexity.
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Space Complexity Classes

Definition (Deterministic space classes)

e DSPACE[S(n)] is the class of languages decidable by a
deterministic multi-tape Turing machine using O(S(n))
space.

e TIMESPACE[T(n),S(n)] (i.e., TISP[T(n), S(n)]) is the class of
languages decidable by a deterministic multi-tape Turing
machine using O(T(n)) time and O(S(n)) space.




Motivation: Hardness for NP, Continued

e “SAT € P?” is way too hard apparently (e.g., the relativization
barrier), can we prove something weaker first?

e Asimpler question: Is there a polynomial time algorithm for
SAT that uses very little space? (say, is
SAT € TISP[n°W, n°°12)

e Thislecture: SAT is not in TISP[n®~¢, n¢] for
¢ = 5 ~ 1.618 and very small € > o!

e More precisely, we will prove the following:

Theorem

NTIME[n] € TISP[n®~¢,n¢] for o =
€ > 0.

~ 1.618 and very small
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deterministic Turing machine M and a constant ¢ such that:

e Foreveryx € L, there exists a witness w with [w| < ¢ - T(|x|)
such that M(x, w) accepts in time ¢ - T(|x|).
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An alternative definition of NTIME [T (»n)]

Instead of using a non-deterministic Turing machine, we can
define NTIMEIT(n)] using a deterministic Turing machine with
witness.

Definition (Alternative definition of NTIME[T(n))

] Alanguage L € NTIME[T(n)] if and only if there exists a

deterministic Turing machine M and a constant ¢ such that:

e Foreveryx € L, there exists a witness w with [w| < ¢ - T(|x|)
such that M(x, w) accepts in time ¢ - T(|x|).

e Foreveryx ¢ L, for all strings w with [w| < ¢ - T(|x|), M(x, w)
rejects in time ¢ - T(]x|).

e This is equivalent to the standard definition using
non-deterministic Turing machines. The witness w
corresponds to the sequence of non-deterministic choices.
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Definition: X,TIME(T (»)] and TT,TIME[T(n)]

Definition

Alanguage L € X,TIME[T(n)] if and only if there exists a

deterministic Turing machine M and a constant ¢ such that:

e Foreveryx € L, there exists a witness w; with |w;| < ¢ - T(|x|)
such that for all strings w, with [w,| < ¢ - T(|x|), M(x, wy, w,)
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Definition

Alanguage L € TI,TIME[T(n)] if and only if there exists a

deterministic Turing machine M and a constant ¢ such that:

e Foreveryx € L, for all strings w; with [w;| < ¢ - T(|x]), there
exists a witness w, with |w,| < ¢ - T(Jx|) such that M(x, w,, w,)
accepts in time ¢ - T(|x]).

e Foreveryx ¢ L, there exists a witness w, with |w;| < ¢ - T(|x])
such that for all strings w, with (w,| < ¢ - T(|x|), M(x, wy, w,)
rejects in time ¢ - T(|x]).
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The Speedup Lemma

DTS[r¢] = TISP[n¢, n°™].

Lemma (Speedup Lemma)

DTS[n%] C (In*)(V log n) DTS *].
DTS[n%] C (Vr*)(3logn)DTS[n**].

Definition
Alanguage L € (3f(n))(Vg(n))DTS[n"] if there is an n°™) space
machine M such that for all x € {o,1}",
e x € Lifand only if there exists a witness w with
lw| = f(n)*°W such that for every y with |y| = g(n)*+°®,
M(x, w,y) accepts in n* %) time.

Proof of the Speedup Lemma: see the white board!




The Slowdown Lemma

DTS[n¢] = TISP[n¢, n°W].

Lemma (Slowdown Lemma)
IfNTIME[n] C DTS[n‘], then £,TIME(n 4 C NTIME[p*cte()],

Proof: see the white board!
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The Padding Lemma

Lemma (Padding Lemma)
IfNTIME[n] C DTS[n¢], then NTIME[n?] C DTS[n*].

Proof: see the white board!
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Main theorem: The ¢ Lower Bound

Theorem
_ VG
NTIME[n] € DTS[n® €] forany e > o, ¢ = =2 ~ 1.618.

e Again, Proof by contradiction.

e Assume NTIME[n] C DTS[n®~¢], we will deduce
Y, TIME[n%] C TI,TIME[n?] for somea > b > 1, this is also a
contradiction.

Lemma
Y, TIME[n*] € TI,TIME[n"] foranya > b > 1.




Main theorem: The ¢ Lower Bound

Theorem
_ V5
NTIME[n] Z DIS[n®~¢] forany e > o, = =22 ~ 1.618.

Key lemma:

Lemma
Forallk > o, if NTIME[n] C DTS[n‘], then

DTS [n“ka:lfi] cs TIME[ ol )]

and .
DTS [n”zfzﬂ] cT TIME[ "ol )]

Proof: see the white board!




