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PSPACE-completeness and TQBF

TheSpeedup Lemma
DTS[nc] = TISP[nc, no(1)].

Lemma (Speedup Lemma)
DTS[nd] ⊆ (∃nx)(∀ log n)DTS[nd−x].
DTS[nd] ⊆ (∀nx)(∃ log n)DTS[nd−x].

Definition
A language L ∈ (∃f (n))(∀g(n))DTS[nk] if there is an no(1) space
machineM such that for all x ∈ {0, 1}n,
• x ∈ L if and only if there exists a witness wwith
|w| = f (n)1+o(1) such that for every ywith |y| = g(n)1+o(1),
M(x,w, y) accepts in nk+o(1) time.

Proof of the Speedup Lemma: see the white board!
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TheSlowdown Lemma

DTS[nc] = TISP[nc, no(1)].

Lemma (Slowdown Lemma)
If NTIME[n] ⊆ DTS[nc], thenΣ2TIME[nd] ⊆ NTIME[nd·c+o(1)].

Proof: see the white board!
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ThePadding Lemma

Lemma (Padding Lemma)
If NTIME[n] ⊆ DTS[nc], then NTIME[nd] ⊆ DTS[nd·c].

Proof: see the white board!



PSPACE-completeness and TQBF

Main theorem: Theϕ Lower Bound

Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2
≈ 1.618.

• Again, Proof by contradiction.

• Assume NTIME[n] ⊆ DTS[nϕ−ϵ], we will deduce
DTS[na] ⊆ DTS[nb] for some a > b > 1, this is a

contradiction.

Lemma
DTS[na] ̸⊆ DTS[nb] for any a > b > 1.
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Main theorem: Theϕ Lower Bound
Theorem
NTIME[n] ̸⊆ DTS[nϕ−ϵ] for any ϵ > 0,ϕ = 1+

√
5

2
≈ 1.618.

Key lemma:

Lemma
For all k ⩾ 0, if NTIME[n] ⊆ DTS[nc], then

DTS
[
n2+

∑k
i=1 ci

]
⊆ Σ2TIME

[
nc

k+o(1)
]

and
DTS

[
n2+

∑k
i=1 ci

]
⊆ Π2TIME

[
nc

k+o(1)
]

Proof: see the white board!



PSPACE-completeness and TQBF

Today’s plan

• Deterministic and nondeterministic space complexity

• Defining SPACE(f (n)) and NSPACE(f (n))

• Savitch’s theorem: “P = NP” for space!

• A proof overview of Savitch’s theorem.

• Corollaries: PSPACE = NPSPACE andNL ⊆ SPACE(log2 n)

• PSPACE-completeness and TQBF (if time permits)
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PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Quick recap: Deterministic space complexity
• For a multi-tape Turing machineM and input x, the space
complexity ofM on x is the number of tape cells visited by any
head during the computation.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only,

• There is a designated output tapewhich iswrite-only.

• Only thework tapes count towards space complexity.

• SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine usingO(s(n))
space.

• L = SPACE(log n) and PSPACE =
⋃
k∈N SPACE(nk).



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:

◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states

◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function

◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state

◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turingmachine)
• Amulti-tape non-deterministic Turingmachine is a tuple
M = (Q,Σ, Γ , δ, q0, qacc, qrej)where:
◦ Q is a finite set of states
◦ Σ is the input alphabet

◦ Γ is the tape alphabet (with Σ ⊆ Γ )

◦ δ : Q × Γ k → P(Q × Γ k × {L,R, S}k) is the transition function
◦ q0 ∈ Q is the initial state
◦ qacc, qrej ∈ Q are the accepting and rejecting states

• M accepts x if and only if there is a sequence of transitions
that leads to qacc.



PSPACE-completeness and TQBF

Non-deterministic space complexity
Definition (Non-deterministic space complexity)
• For a (non-deterministic) multi-tape Turing machineM and

input x, the space complexity ofM on x is the maximum
number of tape cells visited by any head during the

computation, over all possible sequences of transitions.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.
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Space vs. Nondeterministic space

NSPACE(s(n)): set of languages that can be decided by a
non-deterministic multi-tape Turing machine usingO(s(n))
space.

NL = NSPACE(log n) andNPSPACE =
⋃
k∈N NSPACE(nk).

Basic relationships
• SPACE(s(n)) ⊆ NSPACE(s(n)) (determinism is a special

case).

• NSPACE(s(n)) ⊆ TIME(2O(s(n))).

• SPACE(s(n)) = coSPACE(s(n)).

• Surprisingly: NSPACE(s(n)) = coNSPACE(s(n)) (next
lecture).
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Why Savitch’s theorem is interesting

• In time complexity, nondeterminism seems powerful (P vs.
NP).

• Savitch (1970): for space, nondeterminism is much less

powerful:

NSPACE(s(n)) ⊆ SPACE(s(n)2) for s(n) ⩾ log n.

• Immediate corollary: PSPACE = NPSPACE.

• Another corollary: NL ⊆ SPACE(log2 n). The L vs.NL
question remains open.

• The proof is a clean divide–and–conquer on paths in a
configuration graph, reusing space via recursion.
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Configuration graph

• For a fixedmachineM and input x, a configuration encodes the
state, heads, and work-tape contents.

• IfM uses s(n) space, the number of distinct configurations is

N = 2
O(s(n)).

• Build the directed graph GM,x whose nodes are configurations

and whose edges represent one valid move.

• M accepts x iff there exists a path from the start configuration

cstart to some cacc.

• Any accepting path has length at mostN (no need to repeat
configurations).
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Savitch’s theorem (statement)

Theorem (Savitch)
For s(n) ⩾ log n,

NSPACE(s(n)) ⊆ SPACE(s(n)2).

Intuition
Compute the function Reach(u, v, t) that decides if there is a
path from u to v of length at most t in GM,x inO(s(n)2) space.

Proof: see the white board!
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PSPACE and PSPACE-completeness (recap)

Recall: Many-one reduction
A language Amany-one reduces to B (written A ⩽p

m B) if there
exists a poly-time computable function f such that

x ∈ A ⇐⇒ f (x) ∈ B for all x.

PSPACE-hard / complete
A language L is PSPACE-hard if every A ∈ PSPACEmany-one

reduces to L in polytime.
L is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.
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TQBF (a.k.a. QSAT)
Problem
TQBF= the set of true, fully-quantified Boolean formulas.
Instance: a closed formulaQ1x1 Q2x2 · · ·Qmxm . φ(x1, . . . , xm)
withQi ∈ {∀, ∃} and propositionalφ.
Question: is the formula true under the standard semantics of
quantifiers?

Example
∀x ∃y ∀z. (x ∨ y)∧ (¬y∨ z) is true: for each x, pick y = 1; then

for all z the matrix holds.

Why itmatters
TQBF is the canonical PSPACE-complete problem (the “SAT” of

PSPACE).
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TQBF∈ PSPACE

Depth-first evaluation uses only polynomial space
Evaluate the prefix left-to-right with a recursive procedure that

reuses space:

• ForQx at the front, branch on x ∈ {0, 1} and recurse on the
shorter prefix.

• On an ∃, accept if some branch accepts; on a ∀, accept if all
branches accept.

• Stop at matrixφ and evaluate it in polytime.

The recursion depth is the number of variablesm, so total space
isO(m+ |φ|) = polynomial; timemay be exponential.
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TQBF is PSPACE-hard (proof sketch)

From anyA ∈PSPACE to TQBF
LetM be a poly-space TM deciding A. For input x, consider the
configuration graph GM,x whose nodes are configurations; its size

is 2
p(|x|)

for some polynomial p.

Proof: see the white board!
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A handy template: reductions from TQBF

Game/constraint viewpoint
Evaluate a QBF as a two-player, perfect-information game with

moves for ∃ (Eve) and ∀ (Adam). The formula is true iff Eve has a

winning strategy.

To show a problemB is PSPACE-complete
1. Show B ∈ PSPACE (often via DFS with polynomial memory
or via a succinct dynamic program).

2. Reduce TQBF to B by letting players / constraints simulate
quantifiers and the matrixφ.

3. Ensure the game/instance size is polynomial and the play

length (or search depth) is polynomially bounded.
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Other PSPACE-complete problems (a sampler)

Logic / verification
• QSAT/TQBF (validity of fully-quantified

formulas).

• LTL satisfiability andmodel checking.

• QBF with unrestricted alternations;

bounded alternations capture levels of PH.

• NFA universality / language inclusion.

Planning / search
• STRIPS Plan-Existence (Bylander ’94).

• Corridor tiling problem.

Games / puzzles
(generalized to n× n)
• Generalized Geography.

• Hex, Othello/Reversi, Node Kayles.

• RushHour, Sokoban.

Generalmeta-theorem
Two-player, perfect-information games with

polynomially bounded plays and

polytime-checkable moves are typically

PSPACE-complete via a reduction from TQBF.
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