Computational Complexity Theory
Fall 2025

Finishing the Time-space lower bounds for SAT and Savitch’s Theorem
September 11, 2025

Lijie Chen

University of California, Berkeley

% lijiechen@berkeley.edu

mailto:lijiechen@berkeley.edu

gpsgeeeeer
The Speedup Lemma

DTS[r¢] = TISP[n¢, n°™].

Lemma (Speedup Lemma)

DTS[n%] C (In*)(V log n) DTS *].
DTS[n%] C (Vr*)(3logn)DTS[n**].

Definition
Alanguage L € (3f(n))(Vg(n))DTS[n"] if there is an n°™) space
machine M such that for all x € {o,1}",
e x € Lifand only if there exists a witness w with
lw| = f(n)*°W such that for every y with |y| = g(n)*+°®,
M(x, w,y) accepts in n* %) time.

Proof of the Speedup Lemma: see the white board!

The Slowdown Lemma

DTS[n¢] = TISP[n¢, n°W].

Lemma (Slowdown Lemma)
IfNTIME[n] C DTS[n‘], then £,TIME(n 4 C NTIME[p*cte()],

Proof: see the white board!

gpsgeeeeer
The Padding Lemma

Lemma (Padding Lemma)
IfNTIME[n] C DTS[n¢], then NTIME[n?] C DTS[n*].

Proof: see the white board!

Main theorem: The ¢ Lower Bound

Theorem
_ VG
NTIME[n] € DTS[n® €] forany e > o, ¢ = =2 ~ 1.618.

Lemma
DTS[n%] DTS[n] foranya > b > 1.

Main theorem: The ¢ Lower Bound

Theorem
_ VG
NTIME[n] € DTS[n® €] forany e > o, ¢ = =2 ~ 1.618.

e Again, Proof by contradiction.

Lemma
DTS[n%] DTS[n] foranya > b > 1.

Main theorem: The ¢ Lower Bound

Theorem
_ VG
NTIME[n] € DTS[n® €] forany e > o, ¢ = =2 ~ 1.618.

e Again, Proof by contradiction.

e Assume NTIME[n] C DTS[n®~¢], we will deduce
DTS[n%] C DTS[n] for somea > b > 1, thisis a
contradiction.

Lemma
DTS[n%] Z DTS[n®] foranya > b > 1.

Main theorem: The ¢ Lower Bound

Theorem
_ V5
NTIME[n] Z DIS[n®~¢] forany e > o, = =22 ~ 1.618.

Key lemma:

Lemma
Forallk > o, if NTIME[n] C DTS[n‘], then

DTS [n“ka:lfi] cs TIME[ol)]

and .
DTS [n”zfzﬂ] cT TIME["ol)]

Proof: see the white board!

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity

e Defining SPACE(f (n)) and NSPACE(f (n))

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity
e Defining SPACE(f (n)) and NSPACE(f (n))

e Savitch'’s theorem: “P = NP” for space!

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity

Defining SPACE(f(n)) and NSPACE(f (n))

Savitch's theorem: “P = NP” for space!

A proof overview of Savitch’s theorem.

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity

Defining SPACE(f(n)) and NSPACE(f (n))

Savitch's theorem: “P = NP” for space!

A proof overview of Savitch’s theorem.

Corollaries: PSPACE = NPSPACE and NL C SPACE(log® n)

gpsgeeeeer
Today’s plan

e Deterministic and nondeterministic space complexity

Defining SPACE(f(n)) and NSPACE(f (n))

Savitch's theorem: “P = NP” for space!

A proof overview of Savitch’s theorem.

Corollaries: PSPACE = NPSPACE and NL C SPACE(log® n)

PSPACE-completeness and TQBF (if time permits)

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only,

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only,

e There is a designated output tape which is write-only.

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only,
e There is a designated output tape which is write-only.

e Only the work tapes count towards space complexity.

Quick recap: Deterministic space complexity

e For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only,
e There is a designated output tape which is write-only.
e Only the work tapes count towards space complexity.

e SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine using O(s(n))
space.

Quick recap: Deterministic space complexity

For a multi-tape Turing machine M and input x, the space
complexity of M on x is the number of tape cells visited by any
head during the computation.

We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

The input tape is read-only,
There is a designated output tape which is write-only.
Only the work tapes count towards space complexity.

SPACE(s(n)): set of languages that can be decided by a
deterministic multi-tape Turing machine using O(s(n))
space.

L = SPACE(log n) and PSPACE = | J,, SPACE(n").

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M = (Qr Zr r: 5; qo; qac(;, qrgj) Where:

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M - (Q,r Zr r: 5; qo; qac(;, qrgj) Where:

o Qisafinite set of states

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)
o A multi-tape non-deterministic Turing machine is a tuple

M= (Q, XL, T, 8,90, Gacc, Grj) Where:

o Q isa finite set of states

o Xisthe input alphabet

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states
o Xisthe input alphabet
o ['isthe tape alphabet (with £ C T")

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states

¥ is the input alphabet

I"is the tape alphabet (with X C ")

5:Q x Tk — P(Q x ¥ x {L, R, §}") is the transition function

O O O

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states
¥ is the input alphabet
I"is the tape alphabet (with X C ")
5:Q x Tk — P(Q x ¥ x {L, R, §}") is the transition function
9o € Q is the initial state

0O O O O

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states
¥ is the input alphabet
I"is the tape alphabet (with X C ")
5:Q x Tk — P(Q x ¥ x {L, R, §}") is the transition function
9o € Q is the initial state
ace. @rej € Q are the accepting and rejecting states

O O O O O

Recap: Multi-tape non-deterministic TM

Definition (Multi-tape non-deterministic Turing machine)

o A multi-tape non-deterministic Turing machine is a tuple
M= (Q, XL, T, 8,90, Gacc, Grj) Where:
o Q isa finite set of states
¥ is the input alphabet
I"is the tape alphabet (with £ C T")
5:Q x Tk — P(Q x ¥ x {L, R, §}") is the transition function
9o € Q is the initial state
ace. @rej € Q are the accepting and rejecting states

O O O O O

e M accepts x if and only if there is a sequence of transitions
that leads to .

Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

Space vs. Nondeterministic space

NSPACE(s(n)): set of languages that can be decided by a
non-deterministic multi-tape Turing machine using O(s(n))
space.

NL = NSPACE(log n) and NPSPACE = | J,; NSPACE(n").

Basic relationships

e SPACE(s(n)) C NSPACE(s(n)) (determinism is a special
case).

Space vs. Nondeterministic space

NSPACE(s(n)): set of languages that can be decided by a
non-deterministic multi-tape Turing machine using O(s(n))
space.

NL = NSPACE(log n) and NPSPACE = | J,; NSPACE(n").

Basic relationships

e SPACE(s(n)) C NSPACE(s(n)) (determinism is a special
case).

e NSPACE(s(n)) C TIME(2°6M)),

Space vs. Nondeterministic space

NSPACE(s(n)): set of languages that can be decided by a
non-deterministic multi-tape Turing machine using O(s(n))
space.

NL = NSPACE(log n) and NPSPACE = | J,; NSPACE(n").

Basic relationships

e SPACE(s(n)) C NSPACE(s(n)) (determinism is a special
case).

e NSPACE(s(n)) C TIME(2°6M)),
e SPACE(s(n)) = coSPACE(s(n)).

Space vs. Nondeterministic space

NSPACE(s(n)): set of languages that can be decided by a
non-deterministic multi-tape Turing machine using O(s(n))
space.

NL = NSPACE(log n) and NPSPACE = | J,; NSPACE(n").

Basic relationships

e SPACE(s(n)) C NSPACE(s(n)) (determinism is a special
case).

e NSPACE(s(n)) C TIME(2°6M)),
e SPACE(s(n)) = coSPACE(s(n)).

e Surprisingly: NSPACE(s(n)) = coNSPACE(s(n)) (next
lecture).

Why Savitch’s theorem is interesting

e In time complexity, nondeterminism seems powerful (P vs.
NP).

Why Savitch’s theorem is interesting

e In time complexity, nondeterminism seems powerful (P vs.
NP).

e Savitch (1970): for space, nondeterminism is much less
powerful:

NSPACE(s(n)) C SPACE(s(n)*) fors(n) > logn.

Why Savitch’s theorem is interesting

e In time complexity, nondeterminism seems powerful (P vs.
NP).

e Savitch (1970): for space, nondeterminism is much less
powerful:

NSPACE(s(n)) C SPACE(s(n)?) for s(n) > logn.

e Immediate corollary: PSPACE = NPSPACE.

Why Savitch’s theorem is interesting

e In time complexity, nondeterminism seems powerful (P vs.
NP).

e Savitch (1970): for space, nondeterminism is much less
powerful:

NSPACE(s(n)) C SPACE(s(n)?) for s(n) > logn.

e Immediate corollary: PSPACE = NPSPACE.

e Another corollary: NL C SPACE(log® n). The Lvs. NL
question remains open.

Why Savitch’s theorem is interesting

e In time complexity, nondeterminism seems powerful (P vs.
NP).

e Savitch (1970): for space, nondeterminism is much less
powerful:

NSPACE(s(n)) € SPACE(s(n)?) for s(n) > logn.

e Immediate corollary: PSPACE = NPSPACE.

e Another corollary: NL C SPACE(log® n). The Lvs. NL
question remains open.

e The proof is a clean divide-and—conquer on paths in a
configuration graph, reusing space via recursion.

Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

o If M uses s(n) space, the number of distinct configurations is

N = 2000m)

Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

o If M uses s(n) space, the number of distinct configurations is
N — 200s0m)

e Build the directed graph Gy, whose nodes are configurations
and whose edges represent one valid move.

Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

o If M uses s(n) space, the number of distinct configurations is
N — 200s0m)

e Build the directed graph Gy, whose nodes are configurations
and whose edges represent one valid move.

e M accepts x iff there exists a path from the start configuration
Cstart O SOME Cycc.

Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

o If M uses s(n) space, the number of distinct configurations is
N — 200s0m)
e Build the directed graph Gy, whose nodes are configurations

and whose edges represent one valid move.

e M accepts x iff there exists a path from the start configuration
Cstart O SOME Cycc.

e Any accepting path has length at most N (no need to repeat
configurations).

Savitch’s theorem (statement)

Theorem (Savitch)
Fors(n) > logn,

NSPACE(s(n)) C SPACE(s(n)*).

Intuition

Compute the function Reach(u, v, t) that decides if there is a
path from u to v of length at most t in Gy, in O(s(n)?*) space.

Proof: see the white board!

PSPACE and PSPACE-completeness (recap)

Recall: Many-one reduction
Alanguage A many-one reduces to B (written A <}, B) if there

exists a poly-time computable function f such that

x€A < f(x) €eB forallx.

PSPACE-hard / complete

Alanguage L is PSPACE-hard if every A € PSPACE many-one
reduces to L in polytime.
L is PSPACE-complete if L € PSPACE and L is PSPACE-hard.

TQBF (a.k.a. QSAT)

Problem

TQBF = the set of true, fully-quantified Boolean formulas.
Instance: a closed formula Q.x; Q,x, - - - QX . @ (X4, . . ., X
with Q; € {V, 3} and propositional ¢.

Question: is the formula true under the standard semantics of
quantifiers?

Example

Vx JyVz. (x V y) A (—y V z) is true: for each x, pick y = 1; then
for all z the matrix holds.

Why it matters

TQBEF is the canonical PSPACE-complete problem (the “SAT” of
PSPACE).

TQBF € PSPACE

Depth-first evaluation uses only polynomial space

Evaluate the prefix left-to-right with a recursive procedure that

reuses space:

e For Qx at the front, branch on x € {0, 1} and recurse on the
shorter prefix.

e On an 3, accept if some branch accepts; on a V, accept if all
branches accept.

e Stop at matrix ¢ and evaluate it in polytime.
The recursion depth is the number of variables m, so total space
is O(m + |@|) = polynomial; time may be exponential.

TQBF is PSPACE-hard (proof sketch)

Fromany A € PSPACE to TQBF

Let M be a poly-space TM deciding A. For input x, consider the
configuration graph G, , whose nodes are configurations; its size
is 22(*) for some polynomial p.

Proof: see the white board!

A handy template: reductions from TQBF

Game/constraint viewpoint

Evaluate a QBF as a two-player, perfect-information game with
moves for 3 (Eve) and V (Adam). The formula is true iff Eve has a
winning strategy.

To show a problem B is PSPACE-complete

1. Show B € PSPACE (often via DFS with polynomial memory
or via a succinct dynamic program).

A handy template: reductions from TQBF

Game/constraint viewpoint

Evaluate a QBF as a two-player, perfect-information game with
moves for 3 (Eve) and V (Adam). The formula is true iff Eve has a
winning strategy.

To show a problem B is PSPACE-complete

1. Show B € PSPACE (often via DFS with polynomial memory
or via a succinct dynamic program).

2. Reduce TQBF to B by letting players / constraints simulate
quantifiers and the matrix @.

A handy template: reductions from TQBF

Game/constraint viewpoint

Evaluate a QBF as a two-player, perfect-information game with
moves for 3 (Eve) and V (Adam). The formula is true iff Eve has a
winning strategy.

To show a problem B is PSPACE-complete

1. Show B € PSPACE (often via DFS with polynomial memory
or via a succinct dynamic program).

2. Reduce TQBF to B by letting players / constraints simulate
quantifiers and the matrix @.

3. Ensure the game/instance size is polynomial and the play
length (or search depth) is polynomially bounded.

Other PSPACE-complete problems (a sampler)

Logic / verification

e QSAT/TQBF (validity of fully-quantified
formulas).

e LTL satisfiability and model checking.

e QBF with unrestricted alternations;

bounded alternations capture levels of PH.

e NFA universality / language inclusion.

Planning / search

e STRIPS PLAN-EXISTENCE (Bylander’94).

e Corridor tiling problem.

Games / puzzles
(generalizedton x n)

e GENERALIZED GEOGRAPHY.
e HEX, OTHELLO/REVERSI, NODE KAYLES.

e RUSH HOUR, SOKOBAN.

General meta-theorem

Two-player, perfect-information games with
polynomially bounded plays and
polytime-checkable moves are typically
PSPACE-complete via a reduction from TQBF.

	PSPACE-completeness and TQBF

