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Why is NL = coNL surprising?

In contrast to time complexity (where NP ~ co-NPis open),
nondeterministic space is closed under complement. The proof
uses inductive counting to reason about reachability without
storing large sets.




Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.
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Non-deterministic space complexity

Definition (Non-deterministic space complexity)

e For a (non-deterministic) multi-tape Turing machine M and
input x, the space complexity of M on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

e We say M uses space S(n) if for every input x of length n, M
uses at most S(n) space.

e The input tape is read-only and does not count towards space
usage.

e There is a designated output tape which is write-only and
does not count towards space usage.

e Only the work tapes count towards space complexity.




Recall: NL (nondeterministic logspace)

Fix a standard multi-tape TM model with a read-only input tape.
NL = NSPACE(logn).

e Space counts only the work tapes; the output tape is
write-only.

e Deterministic logspace: L = SPACE(logn).

e Canonical complete problem: directed s—t reachability
(STCONN).




Logspace-reductions and NL-completeness

Definition (Logspace many-one reduction)

A function f is a logspace reduction if f is computed by a
deterministic TM using O(log n) space, and

/

xeEL < f(x) el

Definition (NL-complete)

Alanguage A is NL-hard if every L € NL reduces to Aviaa
logspace many-one reduction.
It is NL-complete if A € NL and A is NL-hard.

Remark
We often use configuration graphs of logspace NTMs to prove hardness.
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Recall: Configuration graph

e For a fixed machine M and input x, a configuration encodes the
state, heads, and work-tape contents.

o If M uses s(n) space, the number of distinct configurations is
N — 200s0m)
e Build the directed graph Gy, whose nodes are configurations

and whose edges represent one valid move.

e M accepts x iff there exists a path from the start configuration
Cstart O SOME Cycc.

e Any accepting path has length at most N (no need to repeat
configurations).
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NL-complete example #1: STCONN

Problem

Input: directed graph G = (V, E), nodes s, t € V.
Question: is there a path from s to t?

e Membership: guess the path node-by-node; keep only the
current node and a counter < |V|in O(logn) space.

e Hardness: see the whiteboard!




NL-complete example #2: NFA non-emptiness

Problem

Input: an NFA A.
Question: is L(A) # (?

e Membership: guess a path from a start state to some
accepting state; store only the current state and step counter.

e Hardness: see the whiteboard!




Alternative definition of NL

A non-deterministic O(log n)-space Turing machine makes a
sequence of O(2°1°¢")) = O(poly(n)) choices on the fly.

An alternative definition of NL treats such a sequence of choices
as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)

Alanguage Lis in NLif and only if there exists a constant c and a
deterministic O(log n)-space Turing machine M(x, w) that takes
x and a witness w such that:

e M(x, w) has streaming access to the witness w.
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sequence of O(2°1°¢")) = O(poly(n)) choices on the fly.

An alternative definition of NL treats such a sequence of choices
as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)

Alanguage Lis in NLif and only if there exists a constant c and a
deterministic O(log n)-space Turing machine M(x, w) that takes
x and a witness w such that:

e M(x, w) has streaming access to the witness w.

e Foreveryx € L, there exists a witness w with [w| < n° such
that M(x, w) accepts.

e Foreveryx ¢ L, for all witnesses w with [w| < n°, M(x, w)

rejects.




The Immerman-Szelepcsényi theorem

Theorem
Fors(n) > logn, NSPACE(s(n)) = co-NSPACE(s(n)).
In particular, NL = coNL.

Proof: see the whiteboard!




