Computational Complexity Theory Fall 2025

NL-completeness and NL = coNL September 12, 2025

Lijie Chen

University of California, Berkeley

Today's plan & why NL = coNL is surprising

- Quick recap: **NL** and space-bounded nondeterminism
- Logspace-reductions and NL-completeness
- Two NL-complete problems
- Overview of the Immerman-Szelepcsényi proof that
 NL = coNL

Today's plan & why NL = coNL is surprising

- Quick recap: **NL** and space-bounded nondeterminism
- Logspace-reductions and NL-completeness
- Two NL-complete problems
- Overview of the Immerman-Szelepcsényi proof that
 NL = coNL

Why is NL = coNL surprising?

In contrast to time complexity (where $\mathbf{NP} \stackrel{?}{=} \mathbf{co} - \mathbf{NP}$ is open), nondeterministic space is closed under complement. The proof uses inductive counting to reason about reachability without storing large sets.

Definition (Non-deterministic space complexity)

• For a (non-deterministic) multi-tape Turing machine *M* and input *x*, the **space complexity** of *M* on *x* is the maximum number of tape cells visited by any head during the computation, over all possible sequences of transitions.

- For a (non-deterministic) multi-tape Turing machine *M* and input *x*, the **space complexity** of *M* on *x* is the maximum number of tape cells visited by any head during the computation, over all possible sequences of transitions.
- We say M uses space S(n) if for every input x of length n, M uses at most S(n) space.

- For a (non-deterministic) multi-tape Turing machine *M* and input *x*, the **space complexity** of *M* on *x* is the maximum number of tape cells visited by any head during the computation, over all possible sequences of transitions.
- We say M uses space S(n) if for every input x of length n, M uses at most S(n) space.
- The input tape is **read-only** and does not count towards space usage.

- For a (non-deterministic) multi-tape Turing machine *M* and input *x*, the **space complexity** of *M* on *x* is the maximum number of tape cells visited by any head during the computation, over all possible sequences of transitions.
- We say M uses space S(n) if for every input x of length n, M uses at most S(n) space.
- The input tape is **read-only** and does not count towards space usage.
- There is a designated **output tape** which is **write-only** and does not count towards space usage.

- For a (non-deterministic) multi-tape Turing machine *M* and input *x*, the **space complexity** of *M* on *x* is the maximum number of tape cells visited by any head during the computation, over all possible sequences of transitions.
- We say M uses space S(n) if for every input x of length n, M uses at most S(n) space.
- The input tape is **read-only** and does not count towards space usage.
- There is a designated **output tape** which is **write-only** and does not count towards space usage.
- Only the **work tapes** count towards space complexity.

Recall: **NL** (nondeterministic logspace)

Fix a standard multi-tape TM model with a read-only input tape.

 $\mathbf{NL} = \mathsf{NSPACE}(\log n).$

- Space counts only the work tapes; the output tape is write-only.
- Deterministic logspace: $\mathbf{L} = \text{SPACE}(\log n)$.
- Canonical complete problem: directed *s*–*t* reachability (STCONN).

Logspace-reductions and NL-completeness

Definition (Logspace many-one reduction)

A function f is a logspace reduction if f is computed by a deterministic TM using $O(\log n)$ space, and

$$x \in L \iff f(x) \in L'$$
.

Definition (NL-complete)

A language A is NL-hard if every $L \in \mathbf{NL}$ reduces to A via a logspace many-one reduction.

It is *NL-complete* if $A \in \mathbf{NL}$ and A is *NL-hard*.

Remark

We often use configuration graphs of logspace NTMs to prove hardness.

• For a fixed machine *M* and input *x*, a *configuration* encodes the state, heads, and work-tape contents.

- For a fixed machine *M* and input *x*, a *configuration* encodes the state, heads, and work-tape contents.
- If M uses s(n) space, the number of distinct configurations is

$$N=2^{O(s(n))}.$$

- For a fixed machine *M* and input *x*, a *configuration* encodes the state, heads, and work-tape contents.
- If M uses s(n) space, the number of distinct configurations is

$$N=2^{O(s(n))}.$$

• Build the directed graph $G_{M,x}$ whose nodes are configurations and whose edges represent one valid move.

- For a fixed machine *M* and input *x*, a *configuration* encodes the state, heads, and work-tape contents.
- If M uses s(n) space, the number of distinct configurations is

$$N=2^{O(s(n))}.$$

- Build the directed graph $G_{M,x}$ whose nodes are configurations and whose edges represent one valid move.
- M accepts x iff there exists a path from the start configuration
 c_{start} to some c_{acc}.

- For a fixed machine *M* and input *x*, a *configuration* encodes the state, heads, and work-tape contents.
- If M uses s(n) space, the number of distinct configurations is

$$N=2^{O(s(n))}.$$

- Build the directed graph $G_{M,x}$ whose nodes are configurations and whose edges represent one valid move.
- M accepts x iff there exists a path from the start configuration c_{start} to some c_{acc} .
- Any accepting path has length at most *N* (no need to repeat configurations).

NL-complete example #1: STCONN

Problem

Input: directed graph G = (V, E), nodes $s, t \in V$. Question: is there a path from s to t?

- Membership: guess the path node-by-node; keep only the current node and a counter $\leq |V|$ in $O(\log n)$ space.
- Hardness: see the whiteboard!

NL-complete example #2: NFA non-emptiness

Problem

Input: an NFA A.

Question: is $L(A) \neq \emptyset$?

- Membership: guess a path from a start state to some accepting state; store only the current state and step counter.
- Hardness: see the whiteboard!

Alternative definition of NL

A non-deterministic $O(\log n)$ -space Turing machine makes a sequence of $O(2^{O(\log n)}) = O(\text{poly}(n))$ choices on the fly.

An alternative definition of NL treats such a sequence of choices as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)

A language L is in **NL** if and only if there exists a constant c and a deterministic $O(\log n)$ -space Turing machine M(x, w) that takes x and a witness w such that:

• M(x, w) has streaming access to the witness w.

Alternative definition of NL

A non-deterministic $O(\log n)$ -space Turing machine makes a sequence of $O(2^{O(\log n)}) = O(\text{poly}(n))$ choices on the fly.

An alternative definition of NL treats such a sequence of choices as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)

A language L is in **NL** if and only if there exists a constant c and a deterministic $O(\log n)$ -space Turing machine M(x, w) that takes x and a witness w such that:

- M(x, w) has streaming access to the witness w.
- For every $x \in L$, there exists a witness w with $|w| \le n^c$ such that M(x, w) accepts.

Alternative definition of NL

A non-deterministic $O(\log n)$ -space Turing machine makes a sequence of $O(2^{O(\log n)}) = O(\text{poly}(n))$ choices on the fly.

An alternative definition of NL treats such a sequence of choices as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)

A language L is in **NL** if and only if there exists a constant c and a deterministic $O(\log n)$ -space Turing machine M(x, w) that takes x and a witness w such that:

- M(x, w) has streaming access to the witness w.
- For every $x \in L$, there exists a witness w with $|w| \le n^c$ such that M(x, w) accepts.
- For every $x \notin L$, for all witnesses w with $|w| \le n^c$, M(x, w) rejects.

The Immerman-Szelepcsényi theorem

Theorem

For $s(n) \geqslant \log n$, NSPACE(s(n)) = co-NSPACE(s(n)). In particular, NL = coNL.

Proof: see the whiteboard!