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Today’s plan &whyNL = coNL is surprising

• Quick recap: NL and space-bounded nondeterminism

• Logspace-reductions and NL-completeness

• Two NL-complete problems

• Overview of the Immerman–Szelepcsényi proof that
NL = coNL

Why isNL = coNL surprising?
In contrast to time complexity (whereNP ?

= co-NP is open),
nondeterministic space is closed under complement. The proof
uses inductive counting to reason about reachability without
storing large sets.
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Non-deterministic space complexity
Definition (Non-deterministic space complexity)
• For a (non-deterministic) multi-tape Turing machineM and
input x, the space complexity ofM on x is the maximum
number of tape cells visited by any head during the
computation, over all possible sequences of transitions.

• We sayM uses space S(n) if for every input x of length n,M
uses at most S(n) space.

• The input tape is read-only and does not count towards space
usage.

• There is a designated output tapewhich iswrite-only and
does not count towards space usage.

• Only thework tapes count towards space complexity.
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Recall:NL (nondeterministic logspace)

Fix a standard multi-tape TMmodel with a read-only input tape.

NL = NSPACE(log n).

• Space counts only the work tapes; the output tape is
write-only.

• Deterministic logspace: L = SPACE(log n).

• Canonical complete problem: directed s–t reachability
(STCONN).



Logspace-reductions and NL-completeness

Definition (Logspacemany-one reduction)
A function f is a logspace reduction if f is computed by a
deterministic TM usingO(log n) space, and

x ∈ L ⇐⇒ f (x) ∈ L ′.

Definition (NL-complete)
A language A isNL-hard if every L ∈ NL reduces to A via a
logspace many-one reduction.
It isNL-complete if A ∈ NL and A is NL-hard.

Remark
We often use configuration graphs of logspace NTMs to prove hardness.



Recall: Configuration graph

• For a fixedmachineM and input x, a configuration encodes the
state, heads, and work-tape contents.

• IfM uses s(n) space, the number of distinct configurations is

N = 2O(s(n)).

• Build the directed graph GM,x whose nodes are configurations
and whose edges represent one valid move.

• M accepts x iff there exists a path from the start configuration
cstart to some cacc.

• Any accepting path has length at mostN (no need to repeat
configurations).
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NL-complete example #1: STCONN

Problem
Input: directed graph G = (V,E), nodes s, t ∈ V.
Question: is there a path from s to t?

• Membership: guess the path node-by-node; keep only the
current node and a counter⩽ |V| inO(log n) space.

• Hardness: see the whiteboard!



NL-complete example #2: NFA non-emptiness

Problem
Input: an NFAA.
Question: is L(A) ̸= ∅?

• Membership: guess a path from a start state to some
accepting state; store only the current state and step counter.

• Hardness: see the whiteboard!



Alternative definition of NL
A non-deterministicO(log n)-space Turing machine makes a
sequence ofO(2O(log n)) = O(poly(n)) choices on the fly.

An alternative definition of NL treats such a sequence of choices
as a witness; this is similar to the proof-verifier viewpoint of NP.

Definition (Alternative definition of NL)
A language L is inNL if and only if there exists a constant c and a
deterministicO(log n)-space Turing machineM(x,w) that takes
x and a witness w such that:
• M(x,w) has streaming access to the witness w.

• For every x ∈ L, there exists a witness wwith |w| ⩽ nc such
thatM(x,w) accepts.

• For every x /∈ L, for all witnesses wwith |w| ⩽ nc,M(x,w)
rejects.
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The Immerman–Szelepcsényi theorem

Theorem
For s(n) ⩾ log n, NSPACE(s(n)) = co-NSPACE(s(n)).
In particular, NL = coNL.

Proof: see the whiteboard!


