
Computational Complexity Theory
Fall 2025
T-time in

√
T-space

September 18, 2025

Lijie Chen
University of California, Berkeley
lijiechen@berkeley.edu

mailto:lijiechen@berkeley.edu

Today’s plan

• Oblivious Turing machines.

• The tree-evaluation problem.

• Themain result: T-time in
√
T-space.

Oblivious Turingmachines

Definition (Oblivious TuringMachine)
Amulti-tape Turing machineM is oblivious if the movement of
its heads depends only on the input length n and the time step t,
but not on the input contents.

More precisely:
• For each tape i and time step t ⩽ T(n), there is a fixed
position pi(t, n)where head imust be located.

• The actual computation (state transitions, symbols written)
can still depend on the input contents.

• Every T-timemulti-tape Turing machine can be made
oblivious in timeO(T log T).

Oblivious Turingmachines

Definition (Oblivious TuringMachine)
Amulti-tape Turing machineM is oblivious if the movement of
its heads depends only on the input length n and the time step t,
but not on the input contents.

More precisely:
• For each tape i and time step t ⩽ T(n), there is a fixed
position pi(t, n)where head imust be located.

• The actual computation (state transitions, symbols written)
can still depend on the input contents.

• Every T-timemulti-tape Turing machine can be made
oblivious in timeO(T log T).

Oblivious Turingmachines

Definition (Oblivious TuringMachine)
Amulti-tape Turing machineM is oblivious if the movement of
its heads depends only on the input length n and the time step t,
but not on the input contents.

More precisely:
• For each tape i and time step t ⩽ T(n), there is a fixed
position pi(t, n)where head imust be located.

• The actual computation (state transitions, symbols written)
can still depend on the input contents.

• Every T-timemulti-tape Turing machine can be made
oblivious in timeO(T log T).

The tree-evaluation problem
Howmuch space is needed to compute a recursive function?
DFS(u):

if IS_LEAF(u):
return LEAF_VALUE(u)

list = []
for v in CHILDREN(u):

list.append(DFS(v))
result = COMBINE(u, list)
return result

IS_LEAF(u): returns True if u is a leaf
LEAF_VALUE(u): outputs at most m bits
COMBINE(u, list): outputs at most m bits
CHILDREN(u): at most O(1) children
Recursive depth is at most d

• Question: howmuch space is needed to compute DFS(root)?

• Naïve answer: O(m · d) bits

• Cook-Mertz algorithm: O(m+ d) bits!!!

The tree-evaluation problem
Howmuch space is needed to compute a recursive function?
DFS(u):

if IS_LEAF(u):
return LEAF_VALUE(u)

list = []
for v in CHILDREN(u):

list.append(DFS(v))
result = COMBINE(u, list)
return result

IS_LEAF(u): returns True if u is a leaf
LEAF_VALUE(u): outputs at most m bits
COMBINE(u, list): outputs at most m bits
CHILDREN(u): at most O(1) children
Recursive depth is at most d

• Question: howmuch space is needed to compute DFS(root)?

• Naïve answer: O(m · d) bits

• Cook-Mertz algorithm: O(m+ d) bits!!!

The tree-evaluation problem
Howmuch space is needed to compute a recursive function?
DFS(u):

if IS_LEAF(u):
return LEAF_VALUE(u)

list = []
for v in CHILDREN(u):

list.append(DFS(v))
result = COMBINE(u, list)
return result

IS_LEAF(u): returns True if u is a leaf
LEAF_VALUE(u): outputs at most m bits
COMBINE(u, list): outputs at most m bits
CHILDREN(u): at most O(1) children
Recursive depth is at most d

• Question: howmuch space is needed to compute DFS(root)?

• Naïve answer: O(m · d) bits

• Cook-Mertz algorithm: O(m+ d) bits!!!

The tree-evaluation problem
Howmuch space is needed to compute a recursive function?
DFS(u):

if IS_LEAF(u):
return LEAF_VALUE(u)

list = []
for v in CHILDREN(u):

list.append(DFS(v))
result = COMBINE(u, list)
return result

IS_LEAF(u): returns True if u is a leaf
LEAF_VALUE(u): outputs at most m bits
COMBINE(u, list): outputs at most m bits
CHILDREN(u): at most O(1) children
Recursive depth is at most d

• Question: howmuch space is needed to compute DFS(root)?

• Naïve answer: O(m · d) bits

• Cook-Mertz algorithm: O(m+ d) bits!!!

Simulating T-time in
√
T-space

Theorem
Every T-time oblivious Turingmachine can be simulated in O(

√
T)

space.

Proof: see the whiteboard!

